

AUSTRALIAN GEOMAGNETISM REPORT 2001

Australian Government Geoscience Australia

MAGNETIC OBSERVATORIES VOLUME 49

www.ga.gov.au • GEOSCIENCE AUSTRALIA • www.ga.gov.au

Department of Industry, Tourism and Resources

Minister for Industry, Tourism & Resources:The Hon. Ian MacfarlaneParliamentary Secretary:The Hon. Warren EntschDepartment Secretary:Mark Paterson

Geoscience Australia

Chief Executive Officer: Neil Williams

Minerals & Geohazards Division

Chief of Division: Chris Pigram Associate Chief: Wally Johnson

Australian Geomagnetism Report 2001

Volume 49

Geomagnetism Section Geoscience Australia Earth Monitoring Geoscience Australia G.P.O. Box 378 Canberra, A.C.T., 2601 AUSTRALIA

Australian Government

Geoscience Australia

Magnetic results for 2001

Alice Springs

Canberra

Charters Towers

Gnangara

Kakadu

Learmonth

Macquarie Island

Mawson

Casey

Davis

Australian Repeat Station Network

Compiled by P.A. Hopgood with contributions by A.M. Lewis, P.G. Crosthwaite, Liejun Wang and A.D. Costar

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore you should not rely solely on this information when making a commercial decision.

This work is copyright. Apart from any fair dealings for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be directed to the Communications Unit, Geoscience Australia, GPO Box 378, Canberra City, ACT 2601.

ISSN: 1447-5146 (Online format) ISSN: 1035-1515 (Printed format)

© Copyright Commonwealth of Australia 2004

During 2001 the Australian Geological Survey Organisation (now Geoscience Australia) operated geomagnetic observatories at Alice Springs and Kakadu in the Northern Territory, Canberra in the Australian Capital Territory, Charters Towers in Queensland, Gnangara and Learmonth in Western Australia, Macquarie Island, Tasmania, in the sub-Antarctic, and Mawson in the Australian Antarctic Territory.

Magnetic recording also took place at the stations of Casey and Davis in the Australian Antarctic Territory. These operations were the joint responsibility of the Australian Antarctic Division of the Commonwealth Department of the Environment and Heritage and GA. Casey was operated at magnetic observatory standard. Davis magnetic station did not have sufficient absolute control to be considered observatory standard, so continued to be regarded as a variation station. In 2001 Geoscience Australia ceased support for the processing of geomagnetic data acquired at the Davis station.

The absolute magnetometers in routine service at the Canberra Magnetic Observatory also serve as the Australian standards. The calibration of these instruments can be traced to International Standards. Absolute magnetometers at all the other Australian observatories are standardised to those at Canberra

Magnetic mean value data at resolutions of 1-minute and 1-hour were provided to the World Data Centres for Geomagnetism at Boulder, USA and at Copenhagen, Denmark, as well as to INTERMAGNET. K indices, principal storms and rapid variations were hand-scaled for the Canberra and Gnangara observatories, and provided regularly to the International Service of Geomagnetic Indices. K indices were digitally scaled at the Mawson observatory.

K indices from Canberra contributed to the southern hemisphere Ks index and the global Kp, am and aa indices, while those from Gnangara contributed to the global am index.

No magnetic repeat stations were occupied in 2001.

Further upgrades were made to the magnetic observatory at Tangerang and the upgrade of the observatory at Manado, Indonesia took place in 2001. This was carried out by GA's Geomagnetism group under an AusAID grant. It included the purchase of instrumentation and the training of staff from Indonesia's BMG, at GA in 2000.

This report describes instrumentation and activities, and presents monthly and annual mean magnetic values, plots of hourly mean magnetic values and K indices at the magnetic observatories and repeat stations operated by GA during calendar year 2001.

ACRONYMS and ABBREVIATIONS

AAD	Australian Antarctic Division
ACRES	Australian Centre for Remote Sensing
ACT	Australian Capital Territory
A/D	Analogue to Digital (data conversion)
ADAM	Data acquisition module produced by Advantech Co. Ltd.
AGR	Australian Geomagnetism Report
AGRF	Australian Geomagnetic Reference Field
AGSO	Australian Geological Survey Organisation (formerly BMR)
AMO	Automatic Magnetic Observatory
ANARE	Australian National Antarctic Research Expedition
ANARESAT	ANARE satellite (communication)
ASP	 Alice Springs (Magnetic Observatory) Atmospheric & Space Physics (a program of the AAD)
AusAID	Australian Agency for International Development
BGS	British Geological Survey (Edinburgh)
BMR	Bureau of Mineral Resources, Geology, and Geophysics (Now Geoscience Australia)
BMG	Badan Meteorologi dan Geofisika (Indonesia)
BoM	(Australian) Bureau of Meteorology
CD-ROM	Compact Disk - Read Only Memory
CNB	Canberra (Magnetic Observatory)
CODATA	Committee on Data for Science and Technology
CSIRO	Commonwealth Scientific and Industrial Research Organisation
CSY	Casey (Variation Station)
СТА	Charters Towers (Magnetic Observatory)
D	Magnetic Declination (variation)
DC	Direct Current
DEH	Department of the Environment and Heritage
DIM	Declination & Inclination Magnetometer (D,I-fluxgate magnetometer)
DMI	Danish Meteorological Institute
DOS	Disk operating system (for the PC)
DVS	Davis (Variation Station)
EDA	EDA Instruments Inc., Canada
e-mail	electronic mail
F	Total magnetic intensity
ftp	file transfer protocol
GA	Geoscience Australia
GIN	Geomagnetic Information Node
GNA	Gnangara (Magnetic Observatory)
GPS	Global Positioning System
GSM	GEM Systems magnetometer
Н	Horizontal magnetic intensity
HDD	Hard disk drive (in a PC)

I	Magnetic Inclination (din)
I INTER-	Magnetic Inclination (dip)
MAGNET	International Real-time Magnetic observatory Network
IAGA	International Association of Geomagnetism and Aeronomy
IBM	International Business Machines
IGRF	International Geomagnetic Reference Field
IGY	International Geophysical Year (1957-58)
IPGP	Institute de Physique du Globe de Paris
IPS	IPS Radio & Space Services (formerly the Ionospheric Prediction Service)
ISGI	International Service of Geomagnetic Indices
Κ	kennziffer (German: logarithmic index; code no.) Index of geomagnetic activity.
KDU	Kakadu, N.T. (Magnetic Observatory)
LRM	Learmonth, W.A. (Magnetic Obsv'ty)
LSO	Learmonth Solar Observatory
mA	milli-Amperes
MAW	Mawson (Magnetic Observatory)
MCQ	Macquarie Is. (Magnetic Observatory)
MGO	Mundaring Geophysical Observatory
MNS	Magnetometer Nuclear Survey (PPM)
nT	nanoTesla
N.T.	Northern Territory
OIC	Officer in Charge
PC	Personal Computer (IBM-compatible)
PGR	Proton Gyromagnetic Ratio
PPM	Proton Procession Magnetometer
PVC	poly-vinyl chloride (plastic)
PVM	Proton Vector Magnetometer
QHM	Quartz Horizontal Magnetometer
Qld.	Oueensland
RCF	Ring-core fluxgate (magnetometer)
SC	Sudden (storm) commencement
sfe	Solar flare effect
SSC	Sudden storm commencement
Tas.	Tasmania
UPS	Uninterruptible Power Supply
UT/UTC	Universal Time Coordinated
W.A.	Western Australia
WDC	World Data Centre
WWW	World Wide Web (Internet)
X	North magnetic intensity
Y	East magnetic intensity
Z	Vertical magnetic intensity
	······································

CONTENTS

SUMMARY	III
ACRONYMS AND ABBREVIATIONS	IV
CONTENTS	V
CONTENTS (CONT.)	VI

Part 1

GEOMAGNETIC OBSERVATORIES 1 ANTARCTIC OPERATIONS 1 MAGNETIC REPEAT STATION NETWORK 1 CALIBRATIONS OF COMPASSES 1 MAGNETIC CALIBRATION FACILITY 1 INDONESIAN OBSERVATORIES 1 DATA DISTRIBUTION 2001 2 INTERMAGNET 2 ØRSTED SATELLITE SUPPORT 2 STORMS & RAPID VARIATIONS 2 INDICES OF MAGNETIC DISTURBANCE 2 DISTRIBUTION OF MEAN MAGNETIC VALUES 2 NOTES AND ERRATA 2 AUSTRALIAN GEOMAGNETISM REPORT SERIES 2 WORLD WIDE WEB 3 INTERVALS OF RECORDING AND MEAN VALUES 3 MAGNETIC VARIOMETERS 3 DATA REDUCTION 3 ABSOLUTE MAGNETION 5 DATA ACQUISITION 5 MAGNETIC OBSERVATORIES 6 AUSTRALIAN MAGNETIC OBSERVATORIES, 2001 6 ALICE SPRINGS OBSERVATORY 6 VARIOMETERS 7 ALICE SPRINGS ONDSERVATORY 6 VARIOMETERS 7 ALICE SPRINGS ANNUAL MEAN VALUES, 2001 <td< th=""><th>ACTIVITIES & SERVICES 2001 1</th><th></th></td<>	ACTIVITIES & SERVICES 2001 1	
INTERMAGNET2ØRSTED SATELLITE SUPPORT2STORMS & RAPID VARIATIONS2INDICES OF MAGNETIC DISTURBANCE2DISTRIBUTION OF MEAN MAGNETIC VALUES2NOTES AND ERRATA2AUSTRALIAN GEOMAGNETISM REPORT SERIES2WORLD WIDE WEB3INSTRUMENTATION3INTERVALS OF RECORDING AND MEAN VALUES3MAGNETIC VARIOMETERS3DATA REDUCTION3ABSOLUTE MAGNETOMETERS4MAGNETIC STANDARDS4ANCILLARY EQUIPMENT5DATA ACQUISITION5MAGNETIC OBSERVATORIES6AUSTRALIAN MAGNETIC OBSERVATORIES, 20016ALICE SPRINGS OBSERVATORY6VARIOMETERS7ALICE SPRINGS ANNUAL MEAN VALUES7OPERATIONS8SIGNIFICANT EVENTS 2001 - ASP8MONTHLY & ANNUAL MEAN VALUES, 20019HOURLY MEAN VALUES9ASP DATA LOSS IN 2001 (CONT.)16	ANTARCTIC OPERATIONS 1 MAGNETIC REPEAT STATION NETWORK 1 CALIBRATIONS OF COMPASSES 1 MAGNETIC CALIBRATION FACILITY 1	
ØRSTED SATELLITE SUPPORT.2STORMS & RAPID VARIATIONS2INDICES OF MAGNETIC DISTURBANCE2DISTRIBUTION OF MEAN MAGNETIC VALUES2NOTES AND ERRATA2AUSTRALIAN GEOMAGNETISM REPORT SERIES2WORLD WIDE WEB3INSTRUMENTATION3INTERVALS OF RECORDING AND MEAN VALUES3MAGNETIC VARIOMETERS3DATA REDUCTION3ABSOLUTE MAGNETOMETERS4MAGNETIC STANDARDS4ANCILLARY EQUIPMENT5DATA ACQUISITION5MAGNETIC OBSERVATORIES6AUSTRALIAN MAGNETIC OBSERVATORIES, 20016ALICE SPRINGS OBSERVATORY6VARIOMETERS7ALICE SPRINGS ANNUAL MEAN VALUES7OPERATIONS8SIGNIFICANT EVENTS 2001 - ASP8MONTHLY & ANNUAL MEAN VALUES, 20019HOURLY MEAN VALUES9ASP DATA LOSS IN 2001 (CONT.)16	DATA DISTRIBUTION 2001 2	
INTERVALS OF RECORDING AND MEAN VALUES	ØRSTED SATELLITE SUPPORT	
MAGNETIC VARIOMETERS3DATA REDUCTION3ABSOLUTE MAGNETOMETERS4MAGNETIC STANDARDS4ANCILLARY EQUIPMENT5DATA ACQUISITION5MAGNETIC OBSERVATORIES6AUSTRALIAN MAGNETIC OBSERVATORIES, 20016ALICE SPRINGS OBSERVATORY6VARIOMETERS6Absolute INSTRUMENTS AND CORRECTIONS7BASELINES7ALICE SPRINGS ANNUAL MEAN VALUES7OPERATIONS8SIGNIFICANT EVENTS 2001 - ASP8MONTHLY & ANNUAL MEAN VALUES, 20019HOURLY MEAN VALUES9ASP DATA LOSS IN 2001 (CONT.)16	INSTRUMENTATION 3	,
AUSTRALIAN MAGNETIC OBSERVATORIES, 2001 6 ALICE SPRINGS OBSERVATORY	MAGNETIC VARIOMETERS 3 DATA REDUCTION 3 ABSOLUTE MAGNETOMETERS 4 MAGNETIC STANDARDS 4 ANCILLARY EQUIPMENT 5	
ALICE SPRINGS OBSERVATORY	MAGNETIC OBSERVATORIES 6)
VARIOMETERS6ABSOLUTE INSTRUMENTS AND CORRECTIONS7BASELINES7ALICE SPRINGS ANNUAL MEAN VALUES7OPERATIONS8SIGNIFICANT EVENTS 2001 - ASP8DATA LOSS IN 2001 - ASP8MONTHLY & ANNUAL MEAN VALUES, 20019HOURLY MEAN VALUES9ASP DATA LOSS IN 2001 (CONT.)16	AUSTRALIAN MAGNETIC OBSERVATORIES, 2001 6)
Absolute Instruments and Corrections7Baselines7Alice Springs Annual Mean Values7Operations8Significant Events 2001 - ASP8Data loss in 2001 - ASP8Monthly & Annual Mean Values, 20019Hourly Mean Values9ASP Data loss in 2001 (cont.)16	ALICE SPRINGS OBSERVATORY 6)
ASP DATA LOSS IN 2001 (CONT.)	Absolute Instruments and Corrections7Baselines7Alice Springs Annual Mean Values7Operations8Significant Events 2001 - ASP8Data loss in 2001 - ASP8Monthly & Annual Mean Values, 20019	
)

CANBERRA OBSERVATORY	. 16
VARIOMETERS	. 16
Absolute Instruments and Corrections	
OPERATIONS	. 17
SIGNIFICANT EVENTS, CNB 2001	. 17
CNB DATA LOSSES IN 2001	
DISTRIBUTION OF CNB DATA DURING 2001	
K INDICES	
CANBERRA ANNUAL MEAN VALUES	
PRINCIPAL MAGNETIC STORMS: CANBERRA 2001	
CNB - RAPID VARIATION PHENOMENA 2001	. 20
CANBERRA 2001 MONTHLY & ANNUAL MEAN	
VALUES	
HOURLY MEAN VALUES	
CNB - RAPID VARIATION PHENOMENA 2001 (CONT	· ·
	. 28
CHARTERS TOWERS OBSERVATORY	. 28
VARIOMETERS	. 28
Absolute Instruments and Corrections	
OPERATIONS	
DISTRIBUTION OF CTA DATA DURING 2001	
SIGNIFICANT EVENTS 2001	. 29
CTA DATA LOSSES IN 2001	. 29
CHARTERS TOWERS ANNUAL MEAN VALUES	. 30
CHARTERS TOWERS 2001 MONTHLY & ANNUAL	
MEAN VALUES	
HOURLY MEAN VALUES	. 31
GNANGARA OBSERVATORY	. 38
VARIOMETERS	38
ABSOLUTE INSTRUMENTS AND CORRECTIONS	
BASELINES	
OPERATIONS	
SIGNIFICANT EVENTS 2001	
DISTRIBUTION OF GNA DATA DURING 2001	
DATA LOSS IN 2001:	
K INDICES	
RAPID VARIATION PHENOMENA	
PRINCIPAL MAGNETIC STORMS - GNANGARA, 200	140
GNANGARA ANNUAL MEAN VALUES	. 40
GNANGARA ANNUAL MEAN VALUES (CONT.)	. 41
GNANGARA 2001 MONTHLY & ANNUAL MEAN	
VALUES	
HOURLY MEAN VALUES	. 43

End of Part 1

CONTENTS CONTINUED

Part 2

KAKADU OBSERVATORY 50
VARIOMETERS50BASELINES51ABSOLUTE INSTRUMENTS & CORRECTIONS51OPERATIONS51SIGNIFICANT EVENTS 200152KAKADU ANNUAL MEAN VALUES52KAKADU 2001 MONTHLY & ANNUAL MEAN VALUES53
HOURLY MEAN VALUES53KDU DATA LOSSES IN 2001:60DISTRIBUTION OF KDU DATA DURING 200160
LEARMONTH OBSERVATORY 60
VARIOMETERS60ABSOLUTE INSTRUMENTS & CORRECTIONS61OPERATIONS61DISTRIBUTION OF LRM DATA DURING 200161LRM - SIGNIFICANT EVENTS 200161LRM SIGNIFICANT DATA LOSS IN 200162LEARMONTH ANNUAL MEAN VALUES62LEARMONTH 2001 MONTHLY & ANNUAL MEAN63HOURLY MEAN VALUES63
MACQUARIE ISLAND70
VARIOMETERS
BASELINES70DPERATIONS70MACQUARIE ISLAND ANNUAL MEAN VALUES70MACQUARIE ISLAND 2001MONTHLY & ANNUALMEAN VALUES72HOURLY MEAN VALUES72SIGNIFICANT EVENTS: MCQ, 200179DISTRIBUTION OF MCQ DATA DURING 200179DATA LOSSES: MCQ, 200179

MAWSON OBSERVATORY	79
VARIOMETERS	79
Absolute Instruments and Corrections	
OPERATIONS	
MAW 2001 DATA LOSS	80
MAW SIGNIFICANT EVENTS 2001	
MAWSON, ANTARCTICA ANNUAL MEAN VALUES	
DISTRIBUTION OF MAW DATA DURING 2001	81
K INDICES	81
MAWSON, ANTARCTICA 2001 MONTHLY & ANNU	AL
MEAN VALUES	
HOURLY MEAN VALUES	83
CASEY OBSERVATORY	90
HISTORY	
VARIOMETERS	
ABSOLUTE INSTRUMENTS AND CORRECTIONS	
CASEY OPERATIONS	
SIGNIFICANT EVENTS: CSY, 2001	
DISTRIBUTION OF CSY DATA DURING 2001	
CASEY ANNUAL MEAN VALUES	
DATA LOSSES: CSY, 2001 CASEY, ANTARCTICA 2001 MONTHLY & ANNUAL	
MEAN VALUES	
HOURLY MEAN VALUES	
DAVIS VARIATION STATION	99
MAGNETOMETERS	99
OPERATIONS	
DISTRIBUTION OF DVS DATA DURING 2001	
SUMMARY OF DATA LOSS IN THE	
AUSTRALIAN OBSERVATORIES IN 2001	100
AUSTRALIAN OBSERVATORIES IN 2001	. 100
INTERNATIONAL QUIET & DISTURBED DA	vs
	. 100
REFERENCES	. 101
GEOMAGNETISM STAFF LIST 2001	. 102
End of Part 2	

This is the third volume of the Australian Geomagnetism Report to be made available in electronic format only. The final volume that was produced in printed format was the Australian Geomagnetism Report 1998. The Australian Geomagnetism Report will continue to be published electronically and will be available on Geoscience Australia's web site: http://www.ga.gov.au/

Released: 5 May 2004

ACTIVITIES & SERVICES 2001

Geomagnetic Observatories

The Geomagnetism Section of the Australian Geological Survey Organisation (now Geoscience Australia) operated nine permanent geomagnetic observatories in the Australian region during 2001. The observatories were located at:

- Alice Springs and Kakadu, Northern Territory
- Canberra, Australian Capital Territory
- Charters Towers, Queensland
- Gnangara (near Perth) & Learmonth, Western Australia
- Macquarie Island, Tasmania (sub-Antarctic)
- Mawson and Casey, Antarctica

Antarctic Operations

Geoscience Australia continued its contribution to the Australian National Antarctic Research Expedition (ANARE) in 2001 by the operation of a magnetic observatory at Macquarie Island (Tasmania) in the sub-Antarctic and observatories at Mawson and Casey in Antarctica. GA's operations at these three observatories were supervised and managed from GA headquarters in Canberra, where the observers (as well the one stationed at Davis in Antarctica) were trained. Logistic support was provided by the Australian Antarctic Division, Department of the Environment and Heritage.

Two absolute observations were performed monthly by staff of the Australian Antarctic Division at Davis. These observations were reduced and used by GA staff, together with data supplied by the Antarctic Division from the variometers at these sites, to produce monthly mean values of the magnetic field. During 2001 this activity was ceased by Geoscience Australia.

Magnetic repeat station network

GA maintains a network of repeat stations throughout continental Australia, its offshore islands, Papua New Guinea and some the south-west Pacific islands. The repeat stations are occupied at intervals of between one and two years to determine the secular variation of the magnetic field.

No stations were re-occupied in 2001.

For descriptions of the repeat station survey operations, instrumentation, data acquisition and reduction, and stations occupied in 2000, see the AGR2000. That volume also includes a description of the Australian Geomagnetic Reference Field (AGRF) model, that includes a secular variation model, for epoch 2000. Charts of the AGRF model are in AGR2000. Repeat station survey data, magnetic observatory data, together with other available data are used to derive the AGRF models. The volumes AGR93 – AGR97 include a listing of all AGRF models produced.

Calibrations of compasses

GA continued to provide a compass calibration facility at cost recovery rates during 2001. This service was used throughout the year by agencies requiring the calibration of compasses and compass theodolites.

Magnetic Calibration Facility

In collaboration with the Australian Department of Defence, the construction of a purpose-designed *National Magnetic Calibration Facility* building, in the south-east of the Canberra Magnetic Observatory compound, was completed in late 1999. The construction, installation and initial calibration of a Finnish designed large 3-axis coil system was completed in December 1999. The facility was officially opened on 18 February 2000.

Fine tuning of the instrumentation was performed during March 2001, by a member of the Lviv Centre of the Institute of Space Research of National Academy of Science and National Space Agency of Ukraine.

Indonesian Observatories

As part of an AusAID funded project, in 2001 Geoscience Australia undertook work to assist in the upgrade of the two Indonesian Geomagnetic Observatories at Tangerang (TNG) near Jakarta on Java and Tondano (TND) near Manado on Sulawesi.

The project involved providing a set of absolute instruments for each of the two observatories and a new variometer system for the Tondano observatory. (This project followed on from an earlier AusAID funded project in which exchange visits and joint repeat station survey work were undertaken in both Australia and Indonesia and a variometer system was provided for Tangerang observatory.) The instrumentation provided to the Indonesian observatories was purchased in 2000.

The absolute instruments provided to each observatory comprised Danish Meteorological Institute DIMs (TNG: D000901; TND: D000902) mounted on MG2KP theodolites (TNG: 34589; TND: 37764) and GEM GSM19 total field magnetometers (TNG: 006997; TND: 006998) with omnidirectional sensors and non magnetic tripods.

The variometer system for Tondano observatory included a Danish Meteorological Institute Model FGE three axis fluxgate (non suspended, E0234, S0214) with ADAM4017 analogue to digital converter, GEM GSM90 variometer PPM (006999), data acquisition hardware and software, GPS clock, data processing hardware and software, back-up power and lightning protection, together with a pre-fabricated fibre-glass and marble absolute pier built at Geoscience Australia.

The equipment was installed during a visit to the observatories by two GA staff from 23 April to 15 May 2001. At Tondano, the existing variometer and office buildings were used to house the variometer system. The system was calibrated using the new absolute pier and absolute instruments and the local staff were trained in the using the new equipment and the acquisition and processing software.

Systems were established to transmit the variometer and weekly absolute observation data from Tondano to GA head office via the internet so that assistance could be provided in the calibration and maintenance of the new observatory. The Tangerang variometer and absolute data are also transmitted to GA via the internet. (One-minute and one-second data values from Tangerang have been transferred to GA on a daily basis since the observatory was first upgraded by GA staff in 1999. See *AGR99*). These data will compliment data gained during repeat station occupations to produce more accurate AGRF models in the future.

During 2001 data from GA's observatory network was routinely provided in support of international programs.

INTERMAGNET

Data from Australian magnetic observatories have been contributed to the INTERMAGNET project (see Trigg and Coles, 1994) since the first CDROM of definitive data was produced. The table below summarises Australian data that have been distributed on INTERMAGNET CDROMs. This reflects the continuing incorporation of Australian observatories into the INTERMAGNET project. The commencement of regular transmission of near real-time preliminary 1-minute data to an INTERMAGNET GIN — the Edinburgh GIN has been exclusively used for Australian data to date — is also shown in the table. To date email has been used as the means of transmitting data to the GIN.

Australian Magnetic Observatory	Data on CDROM	Regular Transmission		
Canberra (CNB)	from 1991	from Oct. 1994		
Gnangara (GNA)	from 1994	from early 1995		
Alice Springs (ASP)	from 1999	from Dec. 1999		
Charters Towers (CTA)	from 2000	from Aug. 2001		
Kakadu (KDU)	from 2000	from Aug. 2001		
Macquarie Island (MCQ)	from 2001	from Jun. 2002		

Ørsted Satellite Support

Since October 1994, preliminary monthly mean values from Australian observatories have been provided to the Ørsted satellite project within about a fortnight after the end of each month. In support of the Ørsted satellite project, 2001 preliminary monthly mean values from all Australian observatories were provided by e-mail to IPGP, France.

Storms & Rapid Variations

Details of storms and rapid variations at Canberra and Gnangara during 2001 were provided monthly to:

- World Data Centre (WDC) A, Boulder, U.S.A.
- WDC C2, Kyoto, Japan
- Observatorio del Ebro, Spain
- IPS, Sydney.

Indices of Magnetic Disturbance

Canberra (with its predecessors at Toolangi and Melbourne) and Hartland (with its predecessors at Abinger and Greenwich) in Great Britain are the two observatories used to determine the 'antipodal' aa index.

Canberra is also one of twelve mid-latitude observatories (of which it is one of only two in the southern hemisphere) used in the derivation of the planetary three-hourly Kp range index. Both Gnangara and Canberra are two of the twenty observatories in the sub-auroral zones used in the derivation of the 'mondial' am index.

During 2001, K indices for CNB were provided semi-monthly to the Adolf-Schmidt-Observatorium (Niemegk, Germany) for the derivation of global geomagnetic activity indicators such as the 'planetary' Kp index.

The weekly provision of CNB K indices to CLS, CNES, Toulouse, France and the Brussels observatory, Belgium, continued throughout 2001. CNB K indices were also provided weekly to the Geomagnetism Research Group of the British Geological Survey (BGS). K indices for CNB and GNA were provided weekly to the International Service of Geomagnetic Indices (ISGI), France, for the compilation of the 'antipodal' aa index and the worldwide 'mondial' am index.

K indices from CNB and GNA were also sent weekly to the IPS Radio and Space Services, Sydney, from where they were further distributed to recipients of their bulletins and reports.

Throughout 2001 all routine K index information was sent by e-mail.

Distribution of mean magnetic values

Hourly mean values in all geomagnetic elements (X, Y, Z, F, H, D & I) and 1-minute mean values in X, Y, Z & F for the following observatories and years were provided to WDC-A, Boulder USA and WDC-C1, Copenhagen, during 2001 as indicated.

Observatory	WDC-A	WDC-C1
Kakadu	1999, 2000	
Charters Towers	1998, 1999, 2000	1998
Alice Springs	2000	2000
Canberra	2000	2000
Gnangara	2000	2000
Learmonth	2000	1999, 2000
Macquarie Island	1998, 1999, 2000	1998, 1999, 2000
Mawson	1998, 1999, 2000	1998, 1999, 2000
Casey		1999, 2000
Davis		1999, 2000

Data were provided in response to numerous requests received from government, educational institutions, industry and individuals, relating to geomagnetism and the variations of the magnetic field at particular locations and over particular intervals.

Notes and Errata

The *AGR1999* and *AGR2000* both show the same incorrect value in the table entitled Gnangara Annual Mean Values that appears on page 40 and page 42 in the respective volumes.

The H component value given for the International Quiet Day mean for 1999.5 incorrectly shown as 23224 (in nT) should read **23234**.

Australian Geomagnetism Report series

Beginning publication as the monthly *Observatory Report* in September 1952, the series was renamed the *Geophysical Observatory Report* in January 1953 (Vol.1 No. 1). Continuing as a monthly report, in January 1990 (Vol. 38 No. 1) the series was renamed the *Australian Geomagnetism Report*. With the same title the monthly series was replaced by the annual report in 1993 (Vol. 41). Details of other reports containing Australian geomagnetic data are in the *AGRs 1995* and *1996*.

The current annual series includes magnetic data from the magnetic observatories, variation stations and repeat stations operated by Geoscience Australia[†], or in which the latter had significant involvement. Detailed information about the instrumentation and the observatories was included in the *AGRs* 1993 and 1994.

The last report that was produced and distributed in printed format was *AGR98*. Beginning with *AGR99*, the report has only been available on GA's web site, from where it may be viewed and downloaded.

World Wide Web

Australian Geomagnetic information is available via the World Wide Web through Geoscience Australia's web site:

http://www.ga.gov.au

Regularly updated data and indices from Australian observatories and the current AGRF model, together with

INSTRUMENTATION

During 2001 the basic system used at Australian observatories to monitor magnetic fluctuations comprised an (orthogonal) three component variometer, in combination with a Proton Precession Magnetometer (PPM) or Overhauser Magnetometer that measured the total field intensity.

The availability of Total Intensity data provided a redundant channel serving as a check on the adopted variometer scalevalues, temperature coefficients and drift-rates through a calculation of the difference between the direct Total Field readings and those derived from the 3-component variometer.

Data produced at observatories were recorded digitally on PCbased acquisition systems, with the capability of remote data recovery to GA, Canberra, by dial-up telephone lines or ftp via intermediate computer.

Intervals of Recording and Mean Values

The standard recording interval was 1-minute. In most cases this was a result of averaging all 1-second samples from the 3-component variometer, and all 10-second samples from the PPM, that fell within the 1-minute interval. The 1-second and 10-second samples were also recorded and were used in the computation of baselines and other variometer parameters.

The 1-minute means were centred on the UT minute such that the first value *within* an hour, labelled 01^{m} , was the mean over the interval $00^{\text{m}}30^{\text{s}}$ to $01^{\text{m}}30^{\text{s}}$, in accordance with IAGA resolution 12 adopted at the Canberra Assembly in December 1979. Hourly means were computed from minutes 00^{m} to 59^{m} .

Hourly, daily, monthly and annual means span the beginning and end of a UT period and so relate to the centre of the respective intervals.

Magnetic Variometers

Details of the variometers that were employed at each of the magnetic observatories during the year are shown in the following table. Detailed descriptions of these instruments were given in the *Australian Geomagnetism Reports 1993* to 1996.

Since 1993, variometers installed at Australian observatories have been orientated so the three orthogonal sensor axes were not aligned with either the H, D and Z magnetic directions or with the cardinal directions North, East and Vertical. This 'non-aligned' configuration has enabled each of the measured components to be of a similar magnitude. This has optimized quality control and the recovery of data from an unserviceable channel from a four component system where F constitutes the fourth component (Crosthwaite, 1992, 1994).

The F-check test (that calculates the difference between F observed and F derived from the three orthogonal components) gives better quality control when the magnitude of the components are similar.

information about the Earth's magnetic field, are available on the Geomagnetism Project web pages.

[†] On 13 August 1992, the Bureau of Mineral Resources, Geology and Geophysics (BMR) was renamed the Australian Geological Survey Organisation (AGSO). References to BMR relate to the period before the name change, and references to AGSO relate to the period after the name change. On 7 August 2001 the Australian Geological Survey Organisation was renamed AGSO - Geoscience Australia, which, on 8 November 2001 became simply Geoscience Australia (GA).

Data Reduction

By the use of regular absolute observations, parameters were gained to enable the calculation of the geographic X, Y and Z (and so H, D, I and F) components of the magnetic field through an equation of the form:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} S_{XA} & S_{XB} & S_{XC} \\ S_{YA} & S_{YB} & S_{YC} \\ S_{ZA} & S_{ZB} & S_{ZC} \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} + \begin{pmatrix} B_X \\ B_Y \\ B_Z \end{pmatrix}$$
$$+ \begin{pmatrix} Q_X \\ Q_Y \\ Q_Z \end{pmatrix} (T - T_S) + \begin{pmatrix} q_X \\ q_Y \\ q_Z \end{pmatrix} (t - t_S) + \begin{pmatrix} D_X \\ D_Y \\ D_Z \end{pmatrix} (\tau - \tau_0)$$

where: • A, B and C are the near-orthogonal, arbitrarily orientated variometer ordinates;

- matrix [S] contains the scale-values;
- vector [B] contains baseline values;
- vectors [Q] and [q] contain temperaturecoefficients for sensors and electronics;
- T and t are the temperatures of the sensors and electronics, while Ts and ts are their standard temperatures;
- vector [D] contains drift-rates with a time origin at τ₀, where τ is the time.

The parameters in [S], [B] [Q] [q] and [D] that best fit the absolute observations were determined by multiple linear regressions. If this technique failed, nominal values were adopted.

By calculating the total field intensity, F, using the model parameters adopted above, and comparing the result with the recording PPM's readings, a continuous monitor of the validity of the model parameters is available. This is the so-called 'Fcheck' that is monitored continuously at all observatories with a redundant PPM channel.

Variometers in service at Australian Observatories in 2001

Observatory	Variometer/Serial no. (operational period)	Resolution (nT)	Acquisition interval (sec.)	Components recorded	
ASP	Narod ring-core fluxgate/9004-3	0.025	1, 60	X, Y, Z‡	
	GSM-19 Overhauser no. 11435 BMR#1 (until 12 Oct 01) GSM-90 Overhauser no. 708729 (from 31 Oct 2001)	0.01	10, 60 "	F "	
CNB	Narod ring-core fluxgate/9004-2 GEM Systems GSM-90 / 81225	0.025 0.01	1, 60 1, 60	NW, NE, Z† F	
CTA	DMI FGE (ver.G) S0210/E0227 (to 04 Feb 2001)	0.1	1,60	NW, NE, Z†	
	DMI FGE (ver.G) S0210/E0199 (07-21 Feb 2001) DMI FGE (ver.G) S0210/E0227 (from 21 Feb 2001)				
	Elsec 820M3 PPM s/n 138	0.1	10, 60	F	
GNA	DMI FGE (ver.D) S0160/E0167	0.1	1, 60	NW, NE, Z†	
	Geometrics 856 No.50706	0.1	10, 60	F	
KDU	DMI FGE fluxgate E0198/S0183	0.1	1, 60	NW, NE, Z†	
	Geometrics 856 No.50707	0.1	10, 60	F	
LRM	Narod fluxgate s/n 9004-04 (until 12 Aug. 2001)	0.025	1, 60	NW, NE, Z	
	Bartington MAG03 s/n 504 (14 Aug - 12 Dec 2001) DMI s/n E0254/S0277 (from 12 Dec. 2001)	0.02 0.03	1,60 1,60	NW, NE, Z NW, NE, Z	
	Geometrics 856 no.50708	0.03	1,60	F	
MCQ	Narod ring-core fluxgate 9305-1	0.025	1,60	A, B, C†	
	Elsec 820M3 PPM 140	0.1	10, 60	F	
MAW	Narod ring-core fluxgate 9004-1	0.025	1,60	NW, NE, Z†	
	Elsec 820M3 PPM 158	0.1	10, 60	F	
DVS	EDA FM105B fluxgate**	0.2	10	X, Y, Z‡	
CSY	EDA FM105B fluxgate**	0.2	10	X, Y, Z‡	

* The serial numbers of the EDA fluxgates are in the sequence: control electronics/sensor head.

** The EDAs at Casey and Davis were Australian Antarctic Division instruments.

† Recorded components A, B & C or NW, NE, Z indicate non-aligned orientation.

‡ Installed before 1993.

Absolute magnetometers

Several types and models of absolute magnetometers were used to calibrate the variometers at the Australian magnetic observatories during 2001. The principal magnetometer combination was a D,I-fluxgate magnetometer (or Declination and Inclination Magnetometer – DIM) that measured the magnetic field direction, complimented by a PPM to measure the total field intensity. At some observatories, older classical QHMs were still available for use as backup should the primary instruments become unserviceable.

The DIM or D,I-fluxgate magnetometer comprises a single axis fluxgate sensor mounted on, and parallel with, the telescope on a non-magnetic theodolite. By setting the sensor perpendicular to the magnetic field vector, the direction of the latter can be determined: its Declination when the sensor is level; its Inclination when the sensor is in the magnetic meridian.

In 2001 both Elsec 810 and Bartington MAG-01H fluxgate sensors and electronics were used together with Zeiss-Jena 020B and 010B non-magnetic theodolites.

A summary of the absolute magnetometers that were in use at each of the Australian observatories during the year is in the table that follows.

Magnetic Standards

BMR/AGSO/GA has always maintained its own standards for Declination and Total Intensity. Since the late 1970s the Australian magnetic standard absolute magnetometers have been held at the Canberra Magnetic Observatory where they are in routine use for the calibration of that observatory. During 1993, a Declination and Inclination magnetometer (DIM) replaced classical magnetometers as the primary Declination and Inclination standard for Australia. (Details of the magnetometers that served as standards prior to 1993 can be found in *AGRs 1993-1997*.) The adoption of the DIM as the Inclination standard has eliminated the need for International calibrations to maintain a Horizontal Intensity, H, standard. This has enabled the more rapid adoption of final instrument corrections.

Proton precession magnetometer MNS2 no.3 served as the Total Intensity (F) standard from the late 1970s until 2000. In January 1995 its crystal oscillator frequency was found to be 13.4ppm below the (CODATA 1986) value recommended by IAGA for use from 1992. This resulted in F readings at Canberra that were theoretically 0.78nT too high. This correction was subsequently taken into account when standardizing total field absolute instruments deployed at all Australian observatories. The instrument was described in AGRs 1993-2000.

In 2001 the MNS2 no. 3 was replaced by the GSM90 Overhauser magnetometer with electronics no. 905926 and sensor no. 81241. Although a small theoretical difference between the old and new total field standards was derived, viz.:

 $F(MNS2)_{old \ standard} = F(GSM90)_{new \ standard} + 0.4nT,$

in view of the uncertainties, no difference between them has been adopted. The new GSM90 standard is applied without correction.

All absolute instruments were standardised against Canberra DIM Elsec 810 no.200 with Zeiss020B theodolite no. 353756 and GSM90 with electronics no. 905926 and sensor no. 81241, although often through subsidiary travelling standards.

Results identified as final in this report indicates that absolute magnetometers used to determine baselines have been corrected so as to be consistent with the Australian Magnetic Standard held at Canberra.

Ancillary equipment

Uninterruptible Power Supplies (UPS) and lightning surge filters were installed at most observatories.

Data Acquisition

During 2001 data acquisition at all the Australian observatories was computer-based. Throughout the year data were recorded every second and every minute at all observatories.

The timing of the data acquisition was controlled by the DOS clock in the acquisition PCs. As the drift rate of a PC's DOS clock could be up to a minute per day, acquisition software had the built-in capability to adjust the clock rate. The drift rate could thus be reduced to as low as a tenth of a second per day. The communication software also allowed the timing to be

reset or adjusted by instructions from GA, Canberra, via modems over a telephone line. At most observatories the PC clocks were kept corrected by synchronizing them with 1-second GPS clock pulses.

Analogue to digital PC cards or external ADAM A/D converters were used to convert analogue data, produced by GA's DMI FGE variometers, to digital values for recording on data acquisition PCs. The AAD's EDA FM105B variometers at Casey and Davis acquired data via their Analogue Data Acquisition System (ADAS).

The Narod ringcore fluxgate magnetometers provided digital data direct to the acquisition PCs.

Digital data have been retrieved automatically from the observatories each day since March 1996. In 2001 the data from the observatories were either retrieved on demand by modems: via telephone lines within Australia; or ANARESAT satellite link from Antarctica, directly to the Geomagnetism Section at the GA headquarters in Canberra.

Observatory	Magnetometer Type: Model/Serial no.	Elements	Resolution
ASP	DIM: Elsec 810/221; Zeiss 020B/313887*	D, I	0.1'
	PPM: Elsec 770/193 (until 20 Nov 2001)	F	1 nT
	GSM-19 Overhauser / 11435 BMR#1 (from 21 Nov. 2001))	F	0.01 nT
CNB	DIM: Elsec 810/200; Zeiss 020B/353756* PPM: GSM-90 no.905926, sensor 81241 (new Australian standard from 01 Jan 2001)	D, I F	0.1' 0.1 nT
СТА	DIM: Elsec 810/215; Zeiss 020B/313888*	D, I	0.1'
	PPM: Geometrics 816/767	F	1 nT
GNA	DIM: Bartington MAG010H/B0725H; Zeiss 020B/355937*	D, I	0.1'
	PPM: Geometrics 856 no. 50631 (sensor 28079922)	F	0.1 nT
KDU	DIM: Bartington MAG010H/B0622H; Zeiss 020B/359142*	D, I	0.1'
	PPM: Elsec 770/189	F	1 nT
LRM	DIM: Bartington 0702H; Zeiss 020B/312714	D, I	0.1'
	PPM: Geometrics 856 no. 50471	F	0.1 nT
MCQ	 DIM: Elsec 810/201 (to late March 2001); Zeiss 020B/311847* Elsec 810/214 (from late March 2001); Zeiss 020B/311847* PPM: Austral /525 (primary); /524 (secondary) QHM Nos. 177, 178, 179 (secondary) 	D, I F H, D	0.1' 1 nT 0.1 nT
MAW	 DIM: Bartington 00766H; Zeiss 020B/313792 (to late Feb. 2001)) DMI D26035; Zeiss 020B/311542 (from late Feb. 2001) PPM: Elsec 770/199 Elsec 770/206 (secondary) QHM Nos. 300, 301, 302 (secondary) Declinometer: Askania 630332 (secondary) Askania circle 611665 (for mounting QHM and Declinometer) 	D,I F F H D	0.1' 1 nT 1 nT 0.1 nT 0.1'
CSY	DIM: Elsec 810/2591; Zeiss 020B/356514*†	D, I	0.1'
	PPM: Geometrics 816/1024	F	1 nT
	QHM No. 493	H	0.1 nT
DVS	DIM: Elsec 810/213; Zeiss 020B/352229* (to 22 Feb 2001) Bartington B0766H (sensor 457); Zeiss 020B/313792 (ex MAW) (from 07 Mar 2001) PPM: Geometrics 816/1025 QHM No. 492 (secondary)	D, I F H	0.1' 1 nT 0.1 nT

Absolute Magnetometers employed in 2001

* DIM serial numbers are in the sequence DIM control module followed by Zeiss theodolite

[†] The DIM at Casey is an Antarctic Division instrument.

The locations of the observatories are shown on the front cover (page i) of this *Australian Geomagnetism Report* and listed, together with the Observers in Charge, in the following table. For a history of the observatories see also the *Australian*

Geomagnetism Reports of 1993 to 1996.

Australian Magnetic Observatories, 2001

On the pages that follow there is an operational report and data summary for each magnetic observatory in the Australian network that operated in 2001.

Observatory	IAGA code	Year begun	Geographic Latitude S	Coordinates Longitude E	Geoma Lat.	agnetic† Long.	Elev'n (m)	Observer in Charge
Kakadu	KDU	1995	12° 41' 11"	132° 28' 20"	-21.99°	205.44°	15	K. Stellmacher
Charters Towers	CTA	1983	20° 05' 25"	146° 15' 51"	-27.96°	220.80°	370	J.M. Millican
Learmonth	LRM	1986	22° 13' 19"	114° 06' 03"	-32.36°	186.28°	4	G.A. Steward
Alice Springs	ASP	1992	23° 45' 40"	133° 53' 00"	-32.85°	208.01°	557	W. Serone
Gnangara	GNA	1957	31° 46' 48"	115° 56' 48"	-41.83°	188.66°	60	O. McConnel H. VanReeken
Canberra	CNB	1978	35° 18' 53"	149° 21' 45"	-42.60°	226.77°	859	Liejun Wang
Macquarie Is.	MCQ	1952	54° 30'	158° 57'	-59.94°	244.09°	8	D. Gillies M. Eccles
Mawson	MAW	1955	67° 36' 14"	62° 52' 45"	-73.11°	109.84°	12	M. Purvins
Casey	CSY		66° 17'	110° 32'	-76.46°	183.72°	40	A. Breed
Variation Station	n							
Davis	DVS		68° 34' 38"	77° 58' 23"	-76.36°	127.94°	29	M. Terkildsen

[†] Geomagnetic coordinates are based on the 2000.0 International Geomagnetic Reference Field (IGRF) model updated to 2001.5 with magnetic north pole position of 79.672°N, 288.380°E.

ALICE SPRINGS OBSERVATORY

The Alice Springs Magnetic Observatory is located approximately 10km to the south of the city of Alice Springs in the Northern Territory, on the research station of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Wildlife and Range Lands Research. The observatory is situated on an alluvial plain over tertiary sediments, overlying late Proterozoic carbonates and quarzites.

Continuous recording of magnetic data commenced at the Alice Springs Magnetic Observatory on 01 June 1992. A detailed history of the observatory is in the *AGR* 1994.

The observatory comprised: a $3m \times 3m$ air-conditioned concrete-brick control house where all recording instrumentation and control equipment was housed; a $3m \times 3m$ roofed absolute shelter, 80m SE of the control house, which enclosed a concrete observation pier (Pier G), the top of which was 1277mm above the concrete floor; two 300mm diameter azimuth pillars that were about 85m from the absolute shelter at approximate true bearings of 130° and 255°; and two small (1m cube) underground vaults located approximately 50m north and east of the control house in which the variometer sensors were housed.

The absolute pier was identified as pier G because there has been a sequence of repeat stations in the Alice Springs area. Repeat stations from A to F have been used in the period since 1912.

Key data for the principal observation site (Pier G) of the observatory are:

- 3-character IAGA code: ASP
- Commenced operation: June 1992
- Geographic latitude: 23° 45' 39.6" S
- Geographic longitude: 133° 53' 00.0" E
- Geomagnetic[†]: Lat. -32.85°; Long. 208.01°
 † Based on the IGRF 2000.0 model updated to 2001.5
- Elevation above mean sea level (top of pier): 557 metres
- Lower limit for K index of 9: 350 nT.
- Azimuth of principal reference pillar (B) from Pier G: 255° 00' 50"
- Distance to Pillar B: 85 metres
- Observer in Charge: W. Serone (ACRES)

Variometers

Variations in the X, Y and Z components of the magnetic field were recorded at Alice Springs in 2001 using a threecomponent Narod ring-core fluxgate (RCF) magnetometer and in the total magnetic field intensity (F) using GEM system Overhauser-effect proton precession magnetometers (PPMs). A GSM-19 was employed until 21 October, after which a GSM90 was installed. The latter suffered from cable and noise problems throughout the remainder of the year causing significant data losses

The six channels of variometer data, (three RCF channels, RCF head and electronics temperatures, and the PPM data), were recorded on an IBM compatible PC.

The recording, and variometer, electronic control equipment was housed in the temperature-controlled control house. In January 2001 the temperature stability of the control house was improved by installing a layer of 75mm high-density polystyrene foam on all internal walls and the ceiling.

The variometer sensor heads were housed in the underground concrete vaults: the RCF head in the eastern vault; the PPM head in the northern vault. The RCF sensor head was aligned so that the (nominally orthogonal) sensor elements were as close as possible to geographic north, east and vertical. The RCF sensor vault was insulated with foam beads and both vaults were completely concealed beneath local soil to minimise temperature fluctuations. The cables from each of the sensor vaults to the control house passed through underground conduits.

The equipment was protected from power outages, surges and lightening strikes by an uninterruptible power supply, a surge absorber, lightening filter and isolation transformer.

Absolute Instruments and Corrections

The principal absolute instruments employed at Alice Springs during 2001 were a D,I fluxgate magnetometer (DIM) and a proton precession magnetometer (PPM). The DIM used was Elsec Type 810, no. 221 with fluxgate sensor mounted on Zeiss 020B non-magnetic theodolite, no. 313887. Elsec model 770 no. 193 PPM operated until 14 November 2001 when it failed. It was replaced on 21November with a GEM model GSM19 no 11435 Overhauser effect PPM.

The Alice Springs DIM failed on 29 August and was returned to GA headquarters where it remained between 04 September and 03 October 2001. The instrument was repaired (by reconnecting the cable between fluxgate sensor and electronics), the theodolite was given routine mechanical and optical maintenance and instrument comparisons were carried out at the Canberra Observatory. The adopted instrument corrections applied to the absolute magnetometers used at Alice Springs in 2001 were determined from instrument comparisons that were performed in January, September and November 2001. In January 2001 a set of travelling standard instruments (Bartington MAG-01H serial 0610H with Zeiss 010B no. 160459 DIM and GSM90 no. 810881 PPM) was compared with the Australian Magnetic Standard instruments (Elsec 810 no. 200 with Zeiss 020B no. 353756 DIM and GSM-90 no. 905926 PPM) at the Canberra Magnetic Observatory. The travelling standard was then compared with the Alice Springs instruments (Elsec 810 no. 221 with Zeiss 020B no. 313887 DIM and Elsec 770 no. 193 PPM) at the Alice Springs Observatory during the maintenance visit in January and February 2001. The Alice Springs DIM was again compared to the Australian Standard DIM at the Canberra Observatory after service and repair in September 2001. These instrument comparisons yielded adopted instrument differences of 0.0', 0.0' and -3.0nT for D I and F sense respectively, in the Instrument difference = Stnd. Instrument – ASP instrument.

The GSM-19 no. 11435 magnetometer, which was used as the absolute total field instrument at Alice Springs from 21 November 2001, was compared to the Australian Standard GSM90 no. 905926 at the Canberra Observatory on 15 November 2001. The comparisons yielded an adopted instrument difference of 1.5nT, in the sense F (GSM90 no. 905926) = F(GSM19 no. 11435) + 1.5nT

Baselines

The instrument differences in the previous section translate to corrections of **-1.68nT**, **-0.15nT** and **2.48nT** in X, Y and Z respectively at the mean field values at Alice Springs for 2001 of: X=29950nT; Y=2675nT and Z=-44240nT. These instrument corrections have been applied to the 2001 data in this report covering the period 01 Jan 2001 until 0242UT 21 November 2001.

The adopted ASP absolute instrument differences of 0.0' 0.0' and 1.5nT in D, I and F respectively yield corrections of **0.84nT**, **0.08nT** and **-1.24nT** in X, Y and Z respectively at the (previously listed) mean field values at Alice Springs. These corrections have been applied to the ASP data from 0242UT on 21 November 2001.

Alice Springs Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on pages 14-15.

Year	Days	(Deg	D Min)	(Deg	l Min)	H (nT)	X (nT)	Y (nT)	Z (nT)	F (nT)	Elts
		(Deg									
1992.708	Α	4	58.4	-56	6.8	29938	29825	2595	-44575	53695	XYZ
1993.5	Α	4	59.0	-56	5.5	29948	29835	2601	-44552	53682	XYZ
1994.5	Α	5	0.1	-56	4.1	29957	29843	2612	-44528	53667	XYZ
1995.5	А	5	1.1	-56	1.7	29980	29865	2623	-44494	53652	XYZ
1996.5	А	5	2.0	-55	59.0	30007	29892	2633	-44458	53638	XYZ
1997.5	А	5	2.9	-55	56.6	30026	29910	2642	-44421	53617	XYZ
1998.5	А	5	4.1	-55	54.7	30034	29917	2653	-44379	53587	XYZ
1999.5	A	5	4.9	-55	51.9	30052	29934	2662	-44329	53555	XYZ
2000.5	A	5	5.5	-55	50.2	30052	29934	2667	-44282	53517	XYZ
2001.5	A	5	6.0	-55	48.0	30067	29948	2673	-44241	53491	XYZ
1992.708		4	58.4	-56	6.0	29950	29838	2596	-44572	53700	XYZ
1993.5	Q	4	59.0	-56	4.8	29959	29845	2603	-44550	53686	XYZ
1993.5	Q	5	0.2	-56	3.3	29939	29845	2603	-44524	53672	XYZ
			-					-	-		
1995.5	Q	5	1.1	-56	1.0	29991	29876	2623	-44492	53656	XYZ
1996.5	Q	5	2.0	-55	58.6	30013	29897	2633	-44458	53640	XYZ
1997.5	Q	5	2.9	-55	56.0	30035	29919	2643	-44419	53621	XYZ
1998.5	Q	5	4.1	-55	54.1	30043	29926	2654	-44377	53590	XYZ
1999.5	Q	5	4.9	-55	51.3	30061	29943	2663	-44326	53558	XYZ
2000.5	Q	5	5.6	-55	49.5	30065	29946	2669	-44279	53521	XYZ

ASP Annual Mean Values (cont.)

Year	Days	D		1		н	X	Y	Z	F	Elts	
	-	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)		
2001.5	Q	5	6.1	-55	47.3	30078	29959	2675	-44239	53495	XYZ	
1992.708	D	4	58.4	-56	8.1	29915	29803	2594	-44579	53686	XYZ	
1993.5	D	4	58.9	-56	6.7	29928	29815	2599	-44556	53674	XYZ	
1994.5	D	5	0.0	-56	5.1	29940	29826	2609	-44531	53660	XYZ	
1995.5	D	5	1.1	-56	2.6	29965	29850	2621	-44497	53646	XYZ	
1996.5	D	5	2.0	-55	59.5	29998	29883	2632	-44460	53634	XYZ	
1997.5	D	5	2.8	-55	57.5	30011	29895	2640	-44423	53611	XYZ	
1998.5	D	5	4.0	-55	55.9	30013	29896	2651	-44383	53578	XYZ	
1999.5	D	5	4.9	-55	53.0	30034	29916	2660	-44332	53548	XYZ	
2000.5	D	5	5.5	-55	51.8	30026	29908	2664	-44287	53506	XYZ	
2001.5	D	5	5.8	-55	49.4	30043	29924	2669	-44245	53480	XYZ	

Operations

Absolute observations were performed weekly (usually on Wednesday afternoons) by the local Observer in Charge, who was an officer at the nearby Australian Centre for Remote Sensing (ACRES) installation. The operation of the observatory was checked twice weekly (usually on Mondays and Fridays) by the observer. The absolute observation data were sent weekly by post to GA in Canberra, where they were reduced and used to calibrate the variometer data.

Daily files of both 1-minute and 1-second resolution data were automatically retrieved from Alice Springs to GA in Canberra by modems via a telephone line connection. The data were then automatically e-mailed to the Intermagnet Geomagnetic Information Node at Edinburgh and made available on the GA web site.

System timing checks and PC hard-disk housekeeping tasks were also performed semi-automatically via the telemetry line. Accurate timing on the data acquisition computer was maintained with a one-second pulse from a Trimble Accutime GPS clock mounted outside the control hut.

The observatory was affected by a nearby lightning strike on 24 November which caused the data recording to stall and damaged the GPS clock. The GPS system was removed and sent to GA for repair. In the absence of the GPS, system timing was maintained through routine daily checks via telemetry.

Significant Events 2001 - ASP

all Jan OIC on leave: No absolute observations performed.

- 19 Jan System rebooted after UPS failed.
- 23 Jan Foam insulation unloaded at observatory.
- 31 Jan to 09 Feb: Service visit by GA staff Foam insulation installed; control hut painted; safety tie down bar on absolute pier installed; instrument comparisons; GPS survey; mark azimuths checked.
- 04 Apr First observation with new absolute PPM stand
- 09 May OIC absent: No absolute observations performed.
- 07 Aug GSM19 variometer PPM began to intermittently fail recording readings.
- 29 Aug DIM malfunctioned and sent to GA for repair.
- 03 Oct DIM returned to ASP after repair and service at GA.
- 08 Oct System tests to investigate problem with GSM19 variometer PPM
- 12 Oct GSM19 total field variometer electronics was returned to GA for repair. (The sensor head and cable were left in place.)

- 31 Oct Data acquisition PC was replaced and GSM90 no. 708729 was installed as total-field variometer PPM, with original cable and head from GSM19 system. GSM90 starts off satisfactorily but quickly began producing noisy data.
- 08 Nov to 11th: Unexplained baseline jumps and noise on all Narod RCF channels.
- 12 Nov GSM90 variometer PPM switched off since as it was not functioning correctly.
- 20 Nov 22nd: Service visit by GA staff to repair GSM90 PPM.
- 21 Nov Introduce GSM19 no.11435 into absolute observation routine to replace Elsec770 no. 193.
- 24 Nov Observatory struck by lightning. All recording magnetometers stalled and GPS clock was damaged.
- 26 Nov All equipment reset and re-booted. The GPS system was removed and sent to GA for repair.
- 08 Dec GSM90 variometer PPM went bad again. Noise on XYZ RCF variometer channels 06-08hrs. UT.

25 Dec 1315-1500: Noise on all channels RCF variometer, probably due to nearby lightning strikes.

Data loss in 2001 - ASP

- 19 Jan 1553 (1 min) All channels: PC rebooted.
- 03 Feb 2337-2351 (5 min) RCF only: Contaminated data omitted from processing.
- 05 Feb 0451 (1 min) All channels: PC rebooted
- 05 Oct 0742 (1 min) RCF channels only
- 31 Oct 0000-0251 (2h 52m) All channels; 0312 (1min) RCF channels: Equipment upgrades.
- 08 Nov 2151-2208 (18m) RCF channels: Contaminated data omitted from processing.
- 11 Nov 0215-0340 (1h 26m); 0645-0720 (41m) RCF channels: Contaminated data omitted from processing.
- 20 Nov 0206-0227 (22m); 0248-0252 (5m) RCF channels: Contaminated data omitted from processing.
- 21 Nov 0613 (1min) RCF channels only.
- 24 Nov 0845 to Nov 25 @ 2359 (1d 15h 15m) All channels: lightning strike.

26 Nov 0000-0341 (3h 42m); 0349-0350 (2m) RCF channels: same lightning strike.

... continued on page 16

Monthly & Annual Mean Values, 2001

The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

Alice Springs	2001	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I.
January	All days	29956.7	2667.1	-44255.8	53507.9	30075.2	5° 05.3'	-55° 48.1'
	5xQ days	29967.8	2672.5	-44253.8	53512.7	30086.8	5° 05.8'	-55° 47.4'
	5xD days	29945.9	2662.5	-44257.1	53502.7	30064.0	5° 04.9'	-55° 48.7'
February	All days	29957.8	2671.6	-44250.1	53504.0	30076.7	5° 05.8'	-55° 47.8'
	5xQ days	29963.4	2674.0	-44249.6	53506.8	30082.5	5° 06.0'	-55° 47.4'
	5xD days	29947.6	2669.5	-44251.0	53499.0	30066.4	5° 05.6'	-55° 48.3'
March	All days	29940.0	2669.4	-44249.2	53493.2	30058.8	5° 05.7'	-55° 48.7'
	5xQ days	29960.0	2672.9	-44244.4	53500.6	30079.0	5° 05.9'	-55° 47.4'
	5xD days	29881.8	2661.0	-44257.1	53466.8	30000.0	5° 05.3'	-55° 52.1'
April	All days	29922.5	2670.8	-44255.3	53488.6	30041.5	5° 06.0'	-55° 49.8'
	5xQ days	29938.4	2673.8	-44252.4	53495.1	30057.6	5° 06.2'	-55° 48.9'
	5xD days	29897.0	2667.7	-44259.9	53477.9	30015.8	5° 05.9'	-55° 51.4'
Мау	All days	29946.6	2674.3	-44247.0	53495.3	30065.7	5° 06.2'	-55° 48.2'
	5xQ days	29956.0	2675.9	-44244.1	53498.2	30075.2	5° 06.3'	-55° 47.6'
	5xD days	29918.9	2670.7	-44252.9	53484.5	30037.9	5° 06.1'	-55° 49.9'
June	All days	29951.1	2674.0	-44241.1	53493.0	30070.2	5° 06.1'	-55° 47.8'
	5xQ days	29957.7	2674.4	-44238.9	53494.8	30076.8	5° 06.1'	-55° 47.4'
	5xD days	29937.4	2673.9	-44242.8	53486.7	30056.6	5° 06.2'	-55° 48.6'
July	All days	29954.2	2675.3	-44237.7	53491.9	30073.5	5° 06.2'	-55° 47.5'
	5xQ days	29959.5	2675.4	-44236.7	53494.1	30078.7	5° 06.2'	-55° 47.2'
	5xD days	29949.3	2674.6	-44238.1	53489.4	30068.5	5° 06.2'	-55° 47.8'
August	All days	29953.4	2675.1	-44232.5	53487.2	30072.6	5° 06.2'	-55° 47.4'
	5xQ days	29958.2	2675.0	-44232.0	53489.4	30077.3	5° 06.1'	-55° 47.1'
	5xD days	29944.1	2671.2	-44235.0	53483.8	30063.0	5° 05.9'	-55° 48.0'
September	All days	29951.6	2678.0	-44227.9	53482.5	30071.1	5° 06.6'	-55° 47.3'
	5xQ days	29963.3	2679.8	-44226.1	53487.6	30082.9	5° 06.6'	-55° 46.6'
	5xD days	29935.7	2677.4	-44231.2	53476.3	30055.2	5° 06.6'	-55° 48.2'
October	All days	29929.7	2673.1	-44231.8	53473.3	30048.9	5° 06.2'	-55° 48.6'
	5xQ days	29955.2	2676.1	-44226.1	53482.9	30074.5	5° 06.3'	-55° 47.0'
	5xD days	29881.6	2662.8	-44241.6	53453.9	30000.0	5° 05.5'	-55° 51.5'
November	All days	29944.2	2674.7	-44231.8	53481.5	30063.5	5° 06.3'	-55° 47.8'
	5xQ days	29960.4	2676.2	-44228.7	53488.0	30079.7	5° 06.3'	-55° 46.8'
	5xD days	29892.5	2669.5	-44240.6	53459.5	30011.5	5° 06.2'	-55° 50.9'
December	All days	29965.5	2673.5	-44227.2	53489.5	30084.5	5° 05.9'	-55° 46.5'
	5xQ days	29967.7	2674.4	-44229.8	53493.0	30086.9	5° 06.0'	-55° 46.5'
	5xD days	29954.8	2670.7	-44228.4	53484.4	30073.7	5° 05.7'	-55° 47.1'
Annual	All days	29947.8	2673.1	-44240.6	53490.7	30066.9	5° 06.0'	-55° 47.9'
Mean	5xQ days	29947.8	2675.0	-44238.5	53490.7 53495.3	30078.2	5° 06.1'	-55° 47.3'
Values	5xQ days 5xD days	29959.0 29923.9	2669.3	-44236.5 -44244.6	53495.3 53480.4	30078.2	5° 05.8'	-55° 47.3 -55° 49.4'
values	JAD uays	29920.9	2009.0	-44244.0	55400.4	50042.7	0 00.0	-00 49.4

(Calculated: 13:54 hrs., Fri. 22 Feb. 2002)

Hourly Mean Values

The charts on the following pages are plots of hourly mean values.

The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.

ASP Data loss in 2001 (cont.)

In addition to the above data losses, there was major loss of total field variometer data due to instrumental problems. The F channel only data losses at ASP in 2001 were: 25 Jan 0607 to 31 Jan @ 0359 (5d 21h 53m) GSM19 failure.

25 Jan	0607 to 31	Jan @ 03	59 (5d 21h :	53m) GSN	A19 failure
05 Feb:	8m;	06 Feb:	7m;	07 Aug:	1m;
10 Aug:	1m;	11 Aug:	3m;	12 Aug:	6m;
13 Aug:	9m;	14 Aug:	14m;	15 Aug:	12m;
16 Aug:	18m;	17 Aug:	10m;	18 Aug:	11m;
19 Aug:	11m;	20 Aug:	21m;	21 Aug:	20m;
22 Aug:	18m;	23 Aug:	34m;	24 Aug:	39m;
25 Aug:	81m;	26 Aug:	42m;	27 Aug:	37m;
28 Aug:	61m;	29 Aug:	85m;	30 Aug:	159m;
31 Aug:	142m;	01 Sep:	129m;	02 Sep:	141m;
03 Sep:	206m;	04 Sep:	226m;	05 Sep:	323m;
06 Sep:	369m;	07 Sep:	351m;	08 Sep:	255m;
09 Sep:	349m;	10 Sep:	287m;	11 Sep:	280m;
12 Sep:	308m;	13 Sep:	365m;	14 Sep:	389m;
15 Sep:	382m;	16 Sep:	438m;	17 Sep:	415m;
18 Sep:	514m;	19 Sep:	523m;	20 Sep:	530m;
21 Sep:	567m;	22 Sep:	508m;	23 Sep:	557m;
24 Sep:	600m;	25 Sep:	549m;	26 Sep:	548m;
27 Sep:	588m;	28 Sep:	630m;	29 Sep:	628m;
30 Sep:	644m;	01 Oct:	566m;	02 Oct:	645m;
03 Oct:	592m;	04 Oct:	658m;	05 Oct:	698m;
06 Oct:	774m;	07 Oct:	778m;	08 Oct:	298m;

CANBERRA OBSERVATORY

The Canberra Magnetic Observatory is located in the Australian Capital Territory, approximately 30km east of the city of Canberra. The Canberra observatory is the successor to the Rossbank (1840-1854), Melbourne (1858-1919), Toolangi (1919-1979) observatory sequence of sites in south eastern Australia (McGregor, 1979; Hopgood, 1993).

Recording at the Canberra Magnetic Observatory commenced in 1978 after which it replaced Toolangi as the principal magnetic observatory in the region. A detailed history of the observatory is in *AGR 1994*.

The observatory comprises seven principal buildings: a Recorder House; a (PPM) Sensor House $80m^{\ddagger}$ to the west; an Absolute House $65m^{\ddagger}$ NE of the Recorder House; a Comparison House 12m west of the Absolute House; a Variometer House 85m NW of the Recorder House; a Test House $230m^{\ddagger}$ north of the Recorder House; and the *National Magnetic Calibration Facility* 100m east of the Recorder House.

Other structures on the site include a sheltered external observation site, four azimuth pillars and a seismic vault. The latter houses seismometers operated by GA's earthquake seismology and nuclear monitoring group.

‡ Distances determined by GPS survey.

Key data for the principal observation pier (Absolute-House: AW) at the observatory are:

•	3-character IAGA code:	CNB

- Commenced operation 1978
- Geographic latitude: 35° 18' 52.6" S
- Geographic longitude: 149° 21' 45.4" E
- Geomagnetic[†]: Lat. -42.60°; Long. 226.77°
 † Based on the IGRF 2000.0 model updated to 2001.5

09 Oct:	387m;	10 Oct:	309m;	11 Oct:	423m;
12 Oct	1248m;	13-30 Oc	ct: all F-cha	nnel data l	ost
31 Oct:	1412m;	01 Nov:	1418m;	02 Nov:	1419m;
03 Nov:	1413m;	04 Nov:	1424m;	05 Nov:	1435m;
06 Nov:	1434m;	07 Nov:	1437m;	08 Nov:	1433m;
09 Nov:	1436m;	10-20 No	ov: all F-cha	nnel data	lost
26 Nov:	231m	21 Nov:	242 m	08 Dec:	747m;
09 Dec:	1039m;	10 Dec:	1062m;	11 Dec:	1031m;
12 Dec:	1045m;	13 Dec:	1082m;	14 Dec:	1020m;
15 Dec:	1086m;	16 Dec:	1037m;	17 Dec:	1013m;
18 Dec:	1039m;	19 Dec:	1069m;	20 Dec:	1063m;
21 Dec:	1082m;	22 Dec:	1088m;	23 Dec:	1048m;
24 Dec:	1059m;	25 Dec:	1069m;	26 Dec:	1020m;
27 Dec:	1004m;	28 Dec:	1007m;	29 Dec:	1005m;
30 Dec:	955m;	31 Dec:	981m.		

Distribution of ASP data during 2001

Preliminary Monthly Means for Project Ørsted

• Sent monthly by email to IPGP throughout 2001

1-minute & Hourly Mean Values

• 2000: WDC-A, Boulder, USA (20 Jun 2001)

1-minute Values for Project INTERMAGNET

- Preliminary data daily to the Edinburgh GIN by e-mail.
- Definitive 2000 data for CD-ROM sent to the INTERMAGNET Paris GIN (21 Jun 2001)
- Elevation above mean sea level (top of pier): 859 metres
 Lower limit for K index of 9: 450 nT.
- Azimuth of principal reference pillar (NW) from pier AW: 328° 37' 03"
- Distance to NW Pillar: 137.3 metres
- Observers in Charge: Liejun Wang (GA)

Variometers

During 2001 (since November 1995) a Narod ring-core fluxgate (RCF) variometer operated as the principal variometer at the observatory. It was located on the pier in the eastern room of the Variometer House. It measured variations in three orthogonal components of the magnetic field, and was aligned to measure the (magnetic) north-west; north-east and vertical field components.

A GEM Systems GSM-90 Overhauser effect magnetometer recorded variations in total intensity. The sensor of this instrument was located within the Helmholtz coil system of the Littlemore AMO (decommissioned in 1995) in the observatory's 'Sensor House'. With new controlling electronics this comprised a second three component variometer.

Late in November 2001 a LEMI 3-component fluxgate variometer was installed on the pier in the western room of the Variometer House. This instrument served as reserve should the principal variometer become unserviceable.

Absolute Instruments and Corrections

Throughout 2001 absolute observations were regularly performed at Canberra with a Declination & Inclination Magnetometer (DIM) and a total field magnetometer.

The principal DIM used was an Elsec 810 (no. 200) controller with a Zeiss 020B (no. 353756) non-magnetic theodolite. This instrument was routinely used on Absolute House pier AW. In consideration of numerous intercomparisons between DIMs (and other magnetometers), zero corrections have been applied to absolute observations performed with the DIM Elsec 810/200; Zeiss 020B/353756.

The principal total field instrument used was GSM90 Overhauser magnetometer with electronics no. 905926 and sensor no. 81241. This magnetometer had been used routinely on Absolute House pier Aw, in parallel with PPM MNS2 no. 3, since 5 September 2000. From 2001 it replaced the PPM MNS2 no. 3 that had been in service for many years, principally within the Helmholtz coils of Proton Vector Magnetometer (PVM) serial A situated on pier AE in the Absolute House.

As detailed in the *AGR2000*, application of the new total field standard based on the GSM90 Overhauser magnetometer described above, produce results theoretically close to those based on the obsolete MNS2 no. 3 PPM. (See the *Magnetic Standards* section near the beginning of this report.) In view of the uncertainties, no difference between the old and new F-standards have been adopted. The new GSM90 standard is applied without correction.

The principal absolute magnetometers at the Canberra Magnetic Observatory also serve as the reference standards for the Australian observatory network. Their standardizations are traceable to classical instruments that were regularly calibrated by comparison the international standard.

Operations

Absolute observations were performed weekly (routinely on Tuesdays) by staff of the Geomagnetism Section on a roster. The rostered duties also included producing magnetograms for a week, hand scaling and distribution of the previous week's K indices, and ensuring the provision of 1-minute data from CNB (and other observatories) to INTERMAGNET.

The Narod RCF variometer was situated on pier (VE) in the 'Variometer House' that was maintained as near as possible to set temperatures of 25° C in summer and 15° C in winter for baseline stability. Data from the RCF were transmitted via optical fibre to the Recorder House where they were recorded on an acquisition PC.

The GSM90 Total Intensity variometer was located in the Sensor House with its sensor positioned in the old AMO coil assembly. It was controlled from the Recorder House where the data were also recorded.

From the beginning of 2001, digital data were retrieved automatically every 10 minutes from the CNB observatory to GA via a real-time data link that was established on 20 July 2000 using modems and the telephone line. From 23 April 2001 data telemetry was via a radio modem link.

Once the raw data were received at GA, processing was automatically scheduled, after which processed 1-minute resolution data were provided by e-mail to ISGI, France every 10 minutes (to enable the production of a real-time aa index) and daily to the Edinburgh INTERMAGNET GIN.

System power was backed up with a UPS with an approximately 4-hour capacity.

Significant Events, CNB 2001

- Apr 23 Data telemetry swapped from PST Telstra line to Radio Modem Link.
- Nov 23 UPS failure causing data loss (1470 minutes).
- Nov 27 LEMI fluxgate variometer was installed on pier in western room of variometer hut.
- Dec 19 New UPS installed.

CNB Data losses in 2001

Jan 29 0129 (1 min) All channels 0357, 0814, 0833, 1406, 1410, 1440, 2359

(7 min) F only

- Feb 20 2204 to 21/0240 (4h 37m) F only
- Mar 09 0338 to 13/0134 (3d 21h 57m) F only
- Nov 21 0520-0527 (8 min); 0730-0735 (6 min) All channels
- Nov 22 0307 to 23/0336 (1d 00h 30m), 23/0338 (1m) All channels: UPS failure
- Nov 27 2351-2359 (9 min) All channels
- Dec 19 2240 (1 min), 2242-2244 (3 min)

Distribution of CNB data during 2001

K indices - weekly by e-mail

- IPS Radio & Space Services, Sydney.
- British Geological Survey, Edinburgh.
- International Service of Geomagnetic Indices, Paris.
- Royal Observatory of Belgium, Brussels
- CLS, CNES (French Space Agency), Toulouse

K indices - semi-monthly by e-mail

• Adolph-Schmidt-Observatory Niemegk, Germany

K indices with Principal Magnetic Storms & Rapid Variations - monthly by post

- World Data Center-A, Boulder, USA
- WDC-C2, Kyoto, Japan
- Ebro Observatory, Roquetas, Spain

Preliminary Monthly Means for Project Ørsted

• Sent monthly by email to IPGP throughout 2001

1-minute & Hourly Mean Values

• 2000: WDC-A, Boulder, USA (19 Apr. 2001)

1-minute Values for Project INTERMAGNET

- Preliminary data daily to the Edinburgh GIN by e-mail.
- Definitive 2000 data for CD-ROM sent to the INTERMAGNET GIN, Paris (04 May 2001)

K indices

K indices from the Canberra Magnetic Observatory contribute to the global Kp and aa indices, the southern hemisphere Ks index, and all their derivatives.

The table on the next page shows K indices for Canberra for 2001.

These have been derived by the hand scaling of H and D traces on magnetograms (with a scale of 3nT/mm and 20mm/hr.) produced from the digital data, using the method described by Mayaud (1967).

K indices & Dail	y K sums at Canberra	(K=9 limit: 4	450 nT) for 2001
Is marces & Dun	y is sums at Camberra	(IX-> mmt. ¬	100 111 101 2001

	v		· · · · · · · · · · · · · · · · · · ·				
Date	January	February	March	April	May	June	Date
01	Q 1122 1011 09	2222 2112 14	2220 0121 10	4541 2244 26	Q 1000 0000 01	0003 2112 09	01
02	Q 1000 2113 08	1121 0111 08	1112 2332 15	3233 3334 24	1122 1110 09	D 3322 3332 21	02
03	2333 3122 19	Q 1020 0000 03	1114 4232 18	1220 0321 11	2104 2211 13	2120 0011 07	03
04	2233 4322 21	Q 0111 0010 04	1233 3344 23	2121 4442 20	1233 1111 13	3211 1211 12	04
05	1110 1112 08	1111 1111 08	3232 2222 18	1044 3333 21	Q 0000 0011 02	2211 0000 06	05
06	Q 1222 2211 13	D 2254 2233 23	1211 1111 09	2143 2334 22		1111 2221 11	06
07	1021 1211 09	2221 1122 13	1212 2211 12	3322 2442 22		1213 3110 12	07
08	2221 1233 16	0222 0222 12	1112 1222 12	D 3125 5366 31		1222 1211 12	08
09	2112 3111 12	1122 2111 11	1231 2211 13	2343 2431 22		D 1322 3344 22	09
10	1110 2322 12	1122 2200 10	1321 1120 11	3212 2322 17		D 4343 2221 21	10
11	1121 2322 14	2122 1012 11	Q 1110 1010 05	D 1122 4767 30	1011 0112 07	4322 2222 19	11
12	2232 2000 11	2111 2212 12	1122 3323 17	D 4344 3200 20	D 1324 5354 27	2221 0022 11	12
13	2133 2111 14	D 2443 3343 26	2223 2112 15	D 1136 5553 29	D 3322 3343 23	2322 2222 17	13
14	1322 1122 14	D 1222 4332 19	2312 2112 14	3234 3431 23	3341 0111 14	2311 0012 10	14
15	1123 3122 15	1123 2111 12	Q 0110 0001 03	2233 3212 18	1244 1331 19	2322 0000 09	15
16	1121 4111 12	0111 1111 07	Q 0000 1111 04	2211 3211 13	2233 1001 12	2331 0001 10	16
17	0211 2331 13	Q 1000 0211 05	Q 0110 1222 09	1112 1221 11	2321 0112 12	0012 2111 08	17
18	1133 2121 14	Q 0111 1110 06	2222 1112 13	D 5553 2322 27	2212 2102 12	D 1456 4423 29	18
19	Q 1220 1012 09	1122 2321 14	D 1123 4554 25	Q 1212 2110 10	4320 1010 11	3101 2232 14	19
20	1233 3233 20	1114 3212 15	D 3365 7542 35	3321 2001 12	0111 1200 06	3233 2300 16	20
21	D 1334 3433 24	2132 3101 13	2221 1001 09	1102 1323 13	~ 1111 1211 09	D 1132 2321 15	21
22	3332 2322 20	1122 1211 11	1121 3333 17	3244 4532 27		Q 2000 0001 03	22
23	D 1214 3334 21	D 2332 3311 18	D 3434 3422 25	2245 2111 18		Q 0200 1001 04	23
24	D 3214 4433 24	1211 2100 08	1343 4320 20	Q 1222 1002 10		1112 1211 10	24
25	2121 0121 10	Q 1001 0011 04	1222 1011 10	Q 1002 3211 10		2112 1111 10	25
26 27 28 29 30	2242 3222 19 2121 0101 08 1132 3333 19 D 2422 1122 16 Q 2211 0101 08	1211 1322 13 D 3323 3211 18 1123 4322 18	Q 1111 2001 07 3323 1345 24 D 2255 5423 28 2333 3322 21 2322 2233 19	1132 0122 12 Q 1110 1111 07 1534 5433 28 3221 3211 15 Q 0000 0000 00		0122 3333 17 3210 0100 07 Q 0000 0000 00 Q 0000 0000 00 0003 2021 08	26 27 28 29 30
31	D 0044 4443 23		D 6774 6776 50		Q 0000 0000 00		31
Mean	K-sum 14.7	12.0	16.5	18.3	11.4	11.7	
Date	July	August	September	October	November	December	Date
01	2200 0211 08	2113 1311 13	Q 2211 0000 06	D 3355 4424 30	D 3323 4321 21	1223 3322 18	01
02	Q 1111 1010 06	1121 1210 09	0000 1312 07	D 3363 4444 31	1231 3102 13	1122 2221 13	02

Date				July			Αι	ugust			Ser	ptemb	er		00	ctobe:	r		Nov	vembe	r		Dee	cembe	r	Date
01 02 03 04 05	ļ	Q	1111 0113 1111	0211 1010 3121 1211 1221	06 12 09	D	2113 1121 1242 0000 1224	1210 1121 1320	09 14 06	Q	2211 0000 1223 2332 1110	1312 3334 2222	07 21 18	D		4444	31 34 21		3323 1231 1110 0122 1023	3102 0000	13 03 10		3222		13 16 17	01 02 03 04 05
06 07 08 09 10		Q D	1111 2121 3200	2221 1111 1233 1021 2331	08 15 09	D	2235 1113 1113 1210 2221	1111 1100	10 08 13	Q	1122 0000 1111 1002 2100	0002 1210 1110	02 08 06	Q	0011 2222 2234	2011 1002 4424 4322 3232	05 22 22	_	6763 3313 2222 1211 1111	1223 1111 1112	18 12 10	~	2211		14 10 06	06 07 08 09 10
11 12 13 14 15			1112 0101 3322	1010 2221 0011 2300 3322	12 04 15	D	2100 0014 2433 1223 0101	2333 3222 3212	16 21 16	D	1101 2243 2434 3222 3223	3212 2310 2103	19 19 15		5644 2233 1321	3554 5223 2111 2223 1111	31 15 16	Q	1113 1102 1010 2121 0112	1000 0210	05 05 11	Q	2220 0212	3222 0100	21 07 14	11 12 13 14 15
16 17 18 19 20]	D	3322 1232 0112	2212 3221 1210 3220 2100	18 12 11		0011 0003 2240 0343 0112	4555 2223 1110	22 17 13		1111 1233 2211 3411 1112	2112 2342 1121	15 17 14		1111 1000 4221		05 05 19	D	2222	4332 3212	20 16 20		2322 2223	2221 1122	18 16 15	16 17 18 19 20
21 22 23 24 25		~	2222 3223 2332	2100 1111 2213 3223 3432	12 18 20		1223 1224 3221 1101 0113	4333 1101 1000	22 11 04	~	1111 2224 1345 2221 1310	4210 4553 1121	17 30 12	D	1100	5555 3211	38 17 02	D	2486	 2323	 40		1213 2363	1012 2313	11 16 25	21 22 23 24 25
26 27 28 29 30		Q	2233 2320 3332 2211	3122 2123 1000 2112 1123 4433	18 08 17 13	Q	2243 1211 2212 1223 0112 2224	3133 3121 0011 2431	15 14 10 14	D	5344 1222 1243 2325 2232	1332 3323 3445	16 21 28	~	1544 2333 1222	0022 2101 5333 3334 1211 3333	09 28 24 12	Q	2011 1010	1112 1010	08 07 07	D	1111 1132	3112 3323 3235	08 14 27 26	26 27 28 29 30
31 Mean			-		3.1		2224	-	18 3.1			1.	4.8		UUTT		14 8.1			1	3.6	ע	3221		18 5.5	31
		_		_				_				_				-								_		

Occurrence distribution of K-indices

K-Index:	0	1	2	3	4	5	6	7	8	9	-
January	20	83	79	50	16	0	0	0	0	0	0
February	30	93	69	24	7	1	0	0	0	0	0
March	23	76	75	42	15	8	4	5	0	0	0
April	23	56	64	50	28	13	4	2	0	0	0
May	64	89	42	36	13	4	0	0	0	0	0
June	63	62	70	35	8	1	1	0	0	0	0
July	33	86	76	44	8	1	0	0	0	0	0
August	44	80	69	37	13	5	0	0	0	0	0
September	35	70	67	43	17	6	2	0	0	0	0
October	26	57	69	48	23	20	4	1	0	0	0
November	37	87	57	30	11	2	5	2	1	0	8
December	13	66	112	45	8	2	2	0	0	0	0
ANNUAL TOTAL	411	905	849	484	167	63	22	10	1	0	8

Canberra Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on pages 26-27.

Year	Days		D			н	X	Y	Z	F	Elts*
		(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1979.5	Α	12	5.6	-66	5.9	23833	23305	4993	-53778	58822	DFI
1980.5	Α	12	8.6	-66	6.9	23808	23275	5009	-53767	58801	DFI
1981.5	Α	12	11.2	-66	9.1	23770	23234	5018	-53771	58791	DFI
1982.5	Α	12	14.0	-66	10.8	23736	23197	5030	-53769	58775	DFI
1983.5	Α	12	16.6	-66	11.3	23723	23180	5044	-53756	58758	DFI
1984.5	Α	12	18.4	-66	11.7	23709	23164	5054	-53741	58739	DFI
1985.5	Α	12	20.7	-66	11.6	23703	23155	5067	-53726	58723	DFI
1986.5	А	12	23.2	-66	12.1	23689	23137	5081	-53716	58707	DFI
1987.5	Α	12	25.5	-66	12.0	23684	23129	5096	-53699	58690	DFI
1988.5	Α	12	27.6	-66	12.8	23665	23107	5106	-53690	58674	DFI
1989.5	Α	12	29.0	-66	13.8	23644	23085	5111	-53683	58659	DFI
1990.5	A	12	30.7	-66	13.6	23641	23079	5121	-53667	58643	DFI
1991.5	A	12	31.8	-66	13.9	23628	23066	5126	-53652	58624	DFI
1992.5	A	12	32.4	-66	12.8	23637	23073	5132	-53625	58603	DFI
1993.5	A	12	33.0	-66	11.6	23646	23081	5138	-53597	58581	DFI
1994.5	A	12	33.5	-66	10.8	23649	23083	5142	-53571	58559	DFI
1995.5	A	12	33.8	-66	9.2	23665	23098	5148	-53540	58537	DFI
1996.5	A	12	34.2	-66	7.4	23684	23108	5154	-53507	58514	ABC
1997.5	A	12	34.2	-66	6.1	23695	23127	5157	-53476	58491	ABC
1998.5	A	12	34.2	-66	5.2	23698	23130	5157	-53444	58463	ABC
1999.5 2000.5	A	12 12	34.1 34.2	-66	3.7	23709 23706	23140 23139	5159 5160	-53403 -53367	58429 58396	ABC ABC
2000.5	A	12	34.Z 34.7	-66	2.9 1.5	23706	23139	5160	-53327	58362	ABC
	A			-66							
1979.5	Q	12	5.5	-66	5.3	23844	23315	4995	-53775	58824	DFI
1980.5	Q	12	8.6	-66	6.8	23813	23280	5010	-53769	58806	DFI
1981.5	Q	12	11.4	-66	8.3	23783	23246	5022	-53767	58792	DFI
1982.5	Q	12	14.1	-66	10.1	23749	23210	5033	-53766	58778	DFI
1983.5	Q	12	16.5	-66	10.7	23734	23191	5046	-53753	58760	DFI
1984.5	Q	12	18.5	-66	11.1	23719	23174	5056	-53739	58741	DFI
1985.5	Q	12	20.7	-66	11.1	23713	23164	5070	-53724	58724	DFI DFI
1986.5	Q	12 12	23.2 25.5	-66	11.6 11.6	23697 23690	23146 23136	5083 5097	-53714	58709	DFI
1987.5	Q	12	25.5 27.7	-66	12.2	23690		5097	-53698	58691	DFI
1988.5	Q	12	27.7 29.1	-66	12.2		23118		-53687	58676	DFI
1989.5	Q	12	29.1 30.8	-66	12.8	23657 23653	23098 23092	5114 5125	-53680	58662	DFI
1990.5 1991.5	Q Q	12	30.8 31.8	-66 -66	12.0	23635	23092	5125	-53663 -53647	58645 58627	DFI
1991.5	Q	12	32.5	-66	12.9	23649	23082	5135	-53622	58605	DFI
1992.5	Q	12	33.0	-66	11.1	23655	23085	5135	-53594	58583	DFI
1993.5	Q	12	33.6	-66	10.2	23661	23090	5145	-53568	58561	DFI
1994.5	Q	12	33.9	-66	8.7	23675	23108	5150	-53537	58538	DFI
1996.5	Q	12	34.2	-66	7.2	23689	23108	5155	-53506	58515	ABC
1997.5	Q	12	34.2	-66	5.6	23703	23135	5159	-53474	58492	ABC
1998.5	Q	12	34.3	-66	4.8	23706	23137	5159	-53443	58464	ABC
1999.5	Q	12	34.1	-66	3.2	23716	23148	5161	-53400	58430	ABC
2000.5	Q	12	34.3	-66	2.2	23718	23149	5162	-53365	58398	ABC
2001.5	Q	12	34.7	-66	0.9	23726	23156	5167	-53324	58364	ABC
1979.5	D D	12 12	5.6 8.4	-66	6.9 7.8	23816 23792	23287 23260	4990 5004	-53782	58819	DFI DFI
1980.5 1981.5	D	12	0.4 11.1	-66 -66	10.3	23792	23200	5004 5013	-53770 -53776	58798 58787	DFI
1981.5	D	12	13.7	-00 -66	10.3	23730	23213	5022	-53773	58769	DFI
1982.5	D	12	16.6	-00 -66	12.4	23710	23172	5022	-53760	58754	DFI
1984.5	D	12	18.4	-66	12.7	23691	23146	5049	-53745	58735	DFI
1985.5	D	12	20.5	-66	12.4	23690	23140	5064	-53729	58719	DFI
1986.5	D	12	23.3	-66	12.9	23675	23123	5079	-53717	58703	DFI
1987.5	D	12	25.5	-66	12.6	23674	23120	5094	-53701	58688	DFI
1988.5	D	12	27.5	-66	13.8	23647	23091	5102	-53693	58670	DFI
1989.5	D	12	29.0	-66	15.5	23615	23057	5102	-53690	58654	DFI
1909.5	D	12	30.5	-66	14.8	23619	23057	5116	-53671	58639	DFI
1990.5	D	12	31.6	-66	15.5	23600	23039	5119	-53658	58618	DFI
1991.5	D	12	32.3	-66	14.1	23615	23052	5127	-53630	58600	DFI
1992.5	D	12	33.0	-66	12.7	23628	23052	5134	-53601	58578	DFI
1994.5	D	12	33.4	-66	11.8	23633	23068	5138	-53574	58555	DFI
1995.5	D	12	33.8	-66	10.0	23652	23086	5145	-53542	58533	DFI
1996.5	D	12	34.2	-66	7.9	23676	23108	5152	-53508	58512	ABC
1997.5	D	12	34.1	-66	6.9	23683	23115	5154	-53479	58488	ABC

CNB Annual Mean Values (cont.)

Year	Days		2			н	X	Y	Z	F	Elts*
	-	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1998.5	D	12	34.2	-66	6.4	23678	23110	5153	-53450	58459	ABC
1999.5	D	12	34.1	-66	4.6	23692	23124	5156	-53407	58427	ABC
2000.5	D	12	34.2	-66	4.2	23685	23117	5155	-53372	58392	ABC
2001.5	D	12	34.6	-66	2.7	23695	23126	5159	-53331	58358	ABC

Elements ABC indicates non-aligned variometer orientation

-	9		i			i		1	1	
Comr	Commencement		SC amplitudes		udes	Maximum 3 hr. K in	Maximum 3 hr. K index		U.T. End	
Mth.Day	Hr.Min.	Туре	D(')	D(') H(nT) Z(nT)		Day (3 hr. periods)	K	D(') H(nT) Z(nT)	Day Hr.	
Jan.		No		Principa	ıl	Magnetic		Storms		
Feb.		No		Principa	ıl	Magnetic		Storms		
Mar. 19 30	11 •• 21 ••		 	 	 	20(5) 31(2,3,6,7)	7 7	36.322810058.2500382	20 23 <u>01</u> 09	
Apr. 08 11 13	09 •• 13 •• 07 33	 SSC	 0.9	 27	 3	08(7,8) 11(6,8) 13(4)	6 7 6	26.11167130.13809029.615485	08 23 12 18 13 22	
May 08 12	09 •• 03 ••	•••		••	 	09(5,6) 12(5,7)	5 5	21.2 127 45 16.4 108 39	10 03 14 09	
Jun. 18	03 ••	•••	••	••	••	18(4)	6	19.0 122 61	19 03	
Jul.		No		Principa	ıl	Magnetic		Storms		
Aug. 06 17	06 … 11 03	 SSC	 -1.7	•• +33	•• +9	06(4,5) 17(6,7,8)	5 5	10.6 73 29 14.3 135 49	07 03 18 09	
Sep. 23 25 30	04 •• 20 24 12 ••	 ssc* 	• +16.1* ••	•• +60 ••	•• -18 ••	23(4,6,7) 25(7,8) <u>02</u> (3), <u>03</u> (4)	5 6 6	18.71065322.81644833.522485	24 06 26 12 <u>04</u> 21	
Oct. 11 21 28	12 •• 16 48 03 18	 ssc* ssc*	 +6.5* +3.0*	 +69 +78	 +6 +9	12(2) 21(8) 28(2,5)	6 7 5	22.52106434.03358122.818466	12 21 23 09 29 03	
Nov. 05 24	09 05 00	 SSC	 +0.8	 +51	 +6	06(2) 24(3)	7 8	43.3 351 248 40.0 524 161	07 06 25 12	
Dec. 23	22 ••	•••	••	••	••	24(3)	6	18.8' 169 67	25 12	

Principal Magnetic Storms: Canberra 2001

CNB - Rapid Variation Phenomena 2001

Sudden Storm Commencements (ssc) - CNB 2001

Mo		U.T.	Туре		Chief n		N 1	Mon		U.T.	Туре			moveme	× /
& d	ate		Quali	ity	Н	D	Z	& da	ate		Quali	ty	Н	D	Z
Jan	17	1630	ssc*	Α	+21 *	+12 *	0	Aug	27	1951	SSC	С	+27	+24	0
	23	1048	ssc*	В	+54	+9 *	+12	U				-			
	31	0806	SSC	В	+54	+12	+9	Sep	25	2024	ssc*	С	+60	+111 *	-18
Mar	22	1345	SSC	В	+27	+3	+6	Oct	21	1648	ssc*	b	+69	+45 *	+6
Apr	04	1457	SSC	С	+54	+18	+9		25	0848	SSC	b	+51	+3	+9
	13	0733	SSC	С	+27	+6	+3		28	0318	ssc*	b	+78	+21 *	+9
	28	0500	ssc*	С	+63 *	+18	+6		31	1348	ssc	b	+30	0	+6
May	27	1458	SSC	Α	+21	+9	+3								
Aug	03	0715	SSC	С	+39	-12	+9	Nov	15	1509	SSC	b	+27	+3	+6
Aug				-					24	0500	SSC	b	+51	+6	+6
	12	1118	SSC	С	+42	+6	+9								
	17	1103	SSC	С	+33	-12	+9	Dec	29	0539	SSC	b	+111	+15	+12
									30	2009	ssc	b	+21	+18	+6

Canberra 2001 Monthly & Annual Mean Values

The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

CANBERRA	2001	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I.
January	All days	23159.2	5161.9	-53339.3	58378.7	23727.5	12° 33.9'	-66° 01.1'
	5xQ days	23167.7	5166.6	-53338.1	58381.4	23736.8	12° 34.3'	-66° 00.6'
	5xD days	23150.7	5156.1	-53337.4	58373.1	23717.9	12° 33.3'	-66° 01.6'
February	All days	23155.9	5164.1	-53334.4	58373.2	23724.8	12° 34.3'	-66° 01.1'
	5xQ days	23161.0	5165.6	-53333.0	58374.0	23730.1	12° 34.4'	-66° 00.8'
	5xD days	23148.8	5161.2	-53336.0	58371.5	23717.2	12° 34.1'	-66° 01.6'
March	All days	23138.1	5162.8	-53334.4	58366.0	23707.1	12° 34.7'	-66° 02.1'
	5xQ days	23155.7	5166.1	-53329.6	58368.8	23725.0	12° 34.6'	-66° 01.0'
	5xD days	23087.7	5152.4	-53345.8	58355.6	23655.7	12° 34.8'	-66° 05.1'
April	All days	23123.9	5161.7	-53342.4	58367.6	23693.0	12° 35.0'	-66° 03.0'
	5xQ days	23138.2	5165.7	-53340.2	58371.6	23707.8	12° 35.1'	-66° 02.2'
	5xD days	23100.7	5158.3	-53345.4	58360.8	23669.6	12° 35.3'	-66° 04.4'
Мау	All days	23145.3	5166.3	-53333.5	58368.3	23714.9	12° 35.0'	-66° 01.7'
	5xQ days	23153.4	5168.1	-53330.9	58369.3	23723.2	12° 35.0'	-66° 01.1'
	5xD days	23122.3	5160.2	-53339.1	58363.7	23691.1	12° 34.8'	-66° 03.1'
June	All days	23148.2	5167.4	-53328.1	58364.6	23718.0	12° 35.0'	-66° 01.4'
	5xQ days	23154.6	5168.8	-53325.7	58365.1	23724.5	12° 35.0'	-66° 00.9'
	5xD days	23134.8	5166.1	-53332.0	58362.8	23704.6	12° 35.3'	-66° 02.2'
July	All days	23152.6	5167.6	-53322.9	58361.6	23722.3	12° 34.9'	-66° 01.0'
	5xQ days	23157.7	5167.6	-53321.7	58362.5	23727.3	12° 34.8'	-66° 00.7'
	5xD days	23148.0	5166.6	-53323.6	58360.4	23717.5	12° 34.9'	-66° 01.3'
August	All days	23151.1	5166.5	-53318.6	58357.0	23720.6	12° 34.8'	-66° 01.0'
	5xQ days	23155.3	5167.6	-53317.5	58357.7	23724.9	12° 34.8'	-66° 00.7'
	5xD days	23143.0	5162.0	-53319.9	58354.6	23711.8	12° 34.4'	-66° 01.5'
September	All days	23150.2	5168.1	-53315.9	58354.4	23720.1	12° 35.1'	-66° 01.0'
	5xQ days	23161.2	5169.6	-53313.9	58357.0	23731.1	12° 34.9'	-66° 00.3'
	5xD days	23137.4	5166.2	-53317.6	58350.7	23707.1	12° 35.2'	-66° 01.7'
October	All days	23130.0	5160.8	-53322.3	58351.5	23698.8	12° 34.7'	-66° 02.3'
	5xQ days	23149.1	5166.5	-53316.4	58354.2	23718.6	12° 34.9'	-66° 01.0'
	5xD days	23089.7	5145.3	-53328.3	58339.7	23656.1	12° 33.7'	-66° 04.7'
November	All days	23139.4	5163.0	-53320.5	58353.8	23708.4	12° 34.7'	-66° 01.7'
	5xQ days	23155.5	5166.3	-53315.3	58355.8	23724.9	12° 34.6'	-66° 00.7'
	5xD days	23097.4	5154.7	-53337.2	58351.8	23665.7	12° 34.8'	-66° 04.4'
December	All days	23163.3	5164.0	-53310.3	58354.1	23732.0	12° 34.1'	-66° 00.2'
	5xQ days	23163.2	5163.7	-53308.4	58352.2	23731.8	12° 34.0'	-66° 00.1'
	5xD days	23156.3	5162.1	-53312.3	58353.0	23724.8	12° 34.0'	-66° 00.6'
Annual	All days	23146.4	5164.5	-53326.9	58362.5	23715.6	12° 34.7'	-66° 01.5'
Mean	5xQ days	23140.4	5164.5 5166.9	-53324.2	58364.1	23715.0	12 34.7 12° 34.7'	-66° 00.9'
Values	5xD days	23130.0	5159.3	-53331.2	58358.1	23694.9	12 34.7 12° 34.6'	-66° 00.9 -66° 02.7'
values	Und udys	20120.4	5153.5	-00001.2	00000.1	20034.3	12 04.0	-00 02.1

(Calculated:15:59 hrs., Mon. 24 Feb. 2003)

Hourly Mean Values

The charts on the following pages are plots of hourly mean values.

The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.

- 26 -

CNB - Rapid Variation Phenomena 2001 (cont.)

Solar Flare Effects (sfe) - CNB 2001

Mon	th	U.T.	of move	ement	Amp	litude	(nT)	Confir-
& da	te	Start	Max.	End	H	D	Z	mation
Jun.	23	0406	0408	0410	-8	+5	-3	solar
Sep	09	2042	2045	2051	+6	0	0	solar
Oct	19	0054	0110	0145	-33	-18	0	solar

Month & date							Confir- mation
Nov 05	0252	0254	0256	+2	+3	0	solar
	0700 0103						solar solar
Dec 11 28	0803 0345	0007				Ŭ	solar solar

CHARTERS TOWERS OBSERVATORY

The town of Charters Towers is approximately 120km inland to the south-west of the coastal city of Townsville in north Queensland.

Continuous recording at the Charters Towers Magnetic Observatory commenced in June 1983. A history of the observatory is in *AGR 1994*.

The variometers and recording equipment at Charters Towers were located within a disused gold mine tunnel approximately 100m into the northern side of Towers Hill on the site of the University of Queensland's Seismograph Station. The hilly area on the outskirts of the town where the observatory was located is approximately 1.7km SW of the town centre.

Although not controlled, the temperature within the tunnel where the variometers were located, varied very little over the year: from about 27°C in winter to about 29°C in summer. There was no discernible diurnal temperature variation in the tunnel. The control electronics associated with the variometers were housed in an air-conditioned (for cooling) room in an adjacent arm of the tunnel.

Absolute magnetic observations were performed on a pier located within a non-magnetic shelter on a hillside approximately 250m to the west of the variometers.

Key data for the principal observation pier (Pier C) of the observatory are:

- 3-character IAGA code: CTA
- Commenced operation: June 1983
- Geographic latitude: 20° 05' 25" S
- Geographic longitude: 146° 15' 51" E
- Geomagnetic[†]: Lat. -27.96°; Long. 220.80°
- Based on the IGRF 2000.0 model updated to 2001.5

•	Elevation above mean sea level	
	(top of pier):	370 metres

- Lower limit for K index of 9: 300 nT.
- Azimuth of principal reference PO spire from pier C: 34° 40' 45"
- Distance to PO Spire: 1.75km.
- Observer in Charge: J.M. Millican (Uni. of Qld.)

Variometers

From mid-1983 when the observatory was commissioned until 27 August 2000, EDA model FM-105B 3-component fluxgate magnetometers were employed as the principal variometers at the Charters Towers magnetic observatory.

From 28 August 2000, and throughout 2001, the principal variometer employed at CTA observatory was a DMI FGE suspended 3-component fluxgate magnetometer (electronics E0227, sensor S0210). The sensor head of the instrument was

located on the same concrete blocks in the mine tunnel that the EDA FM-105B sensors were previously. Its sensors were aligned with two of them horizontal, aligned at an approximately equal angle on either side of the magnetic meridian (magnetically NW and NE), and the third sensor vertical.

Prior to its installation at Charters Towers, the DMI FGE magnetometer's scale-values, relative sensor alignments and temperature sensitivities were determined at the Magnetic Calibration Facility at Canberra Observatory. The results were summarised in the *AGR 2000*.

- The DMI electronics unit (E0227) dial offsets were:
- X-coil: A (coarse), C(fine); Y-coil: A (coarse), C (fine); Z-coil: 1 (coarse), C (fine).

DMI electronics unit E0227 failed at 1400 on 04 Feb 2001. A spare DMI electronics unit (E0199) was deployed between 2300 on 07 Feb. to 2300 on 21 Feb 2001. E0227 was repaired at GA headquarters and reinstalled at 2300 on 21 Feb 2001.

There was also a cycling proton precession magnetometer monitoring variations in the magnetic total intensity, F. Elsec 820 no. 138 PPM was employed throughout 2001. The PPM sensor was suspended from the ceiling of the tunnel.

The continuously recording PPM served as both an F-check, and a backup, should any one of the channels of the 3-axis variometer become unserviceable.

Throughout 2001 mean data values over 1-second and 1-minute intervals were recorded in the components A (NW), B (NE), C (Z), as well as the DMI variometer sensor & electronics temperatures. Analogue outputs of A (X-coil), B (Y-coil), C (Z-coil) from the DMI FGE 3-channel fluxgate, along with the fluxgate head and electronics temperature channels, were converted to digital data with an ADAM 4017 A/D converter mounted inside the electronics console. These digital data (together with the digital PPM data) were recorded on an IBM compatible PC.

The digital readings from the Elsec 820 PPM acquired every 10-seconds were input directly to the PC. Timing was generated by the PC.

Absolute Instruments and Corrections

Throughout 2001 the variometers at CTA were calibrated by the performance of weekly absolute observations on Pier C in the absolute shelter.

A Declination & Inclination Magnetometer (DIM) comprising an Elsec Type 810 (no. 215) fluxgate unit mounted on a Zeiss 020B theodolite (no. 313888) was used with with a Geometrics 816 PPM (no. 767) to perform sets of absolute observations.

By regular intercomparisons of 'travelling' standard absolute magnetometers at Canberra and at Charters Towers, the following corrections to the abovementioned absolute magnetometers used at CTA have been determined to align them with the Australian Magnetic Standard.

Year	D(')	I(')	F(nT)
1995	+0.2	+0.05	+1.4
1996	0.0	0.0	+1.0
1997	0.1	+0.04	+1.27
1998	-0.2	+0.05	+0.6

As no absolute magnetometer intercomparisons were performed at Charters Towers magnetic observatory from 1999 to 2001, the instrument corrections for 2001 was taken as the average between 1995 to 1998, ie:

These magnetometer corrections translate to baseline value adjustments of:

 $X = 0.0 \ nT \qquad \ \ Y = 0.0 \ nT \qquad \ \ Z = 0.0 \ nT$

Operations

The officer in charge at CTA observatory performed most routine operations during 2001. Tasks included:

- weekly performance of a set of absolute observations
- Temperature check about 3 times each week
- mailing the observations & log-sheet to GA, Canberra, each week

The clocks on the acquisition PC were regularly checked/corrected remotely from GA in Canberra.

Data files were telemetered daily from CTA to GA in Canberra via modems and telephone lines.

The whole of the variometer and recording system was powered by 240VAC mains which was backed up by a PowerTech UPS with sufficient capacity to power the system for up to four hours.

Distribution of CTA data during 2001

1-minute & Hourly Mean Values (in WDC format)

- 1998: to WDC-A, Boulder USA on 06 Jun. 2001
- 1999: to WDC-A, Boulder USA on 04 Apr. 2001
- 2000: to WDC-A, Boulder USA on 04 Apr. 2001

Preliminary Monthly Means for Project Ørsted

• Sent monthly by email to IPGP throughout 2001

- 1-minute Values (in INTERMAGNET format)
- 1998: to WDC-C1, Copenhagen on 06 Jun. 2001

Significant Events 2001

- Feb 04 Earthmoving equipment began operating at about 2200UT some 150m to north of variometers.DMI electronics unit E0227 failed at 1325UT and then entered an unstable phase at 19:35 UT.
- Feb 07 0600: Spare electronics unit E0199 started operation.
- Feb 21 2323: Original DMI electronics E0227 put back into service repair.
- May 07 0500 (approx.): PPM data became very noisy
- May 24 PPM fault rectified by replacement of sensor head (with s/n 28079907).
- Nov 10 UPS stopped working.
- Nov 26 2200: Tradesmen began repairing tunnel timber, causing data contamination.
- Dec 03 0435: Tunnel repair work completed.

CTA Data losses in 2001

Data loss due to instrument failure, UPS failure and system reboots:

- Feb 07 0425-0427 (3m) DMI channels only
- Feb 21 2315-2316 (2m) DMI channels only
- May 01 1230 to 02/0040 (12h 11m) All channels
- May 11 0029-0035 (7m) F only
- May 21 0109-0134 (26m), 0136-0149 (14m) F only
- May 24 2345 to 25/0006 (22m) F only
- Nov 09 0223-0224 (2m); 0230 to 10/0440 (1d 02h 11m) All channels: UPS failed
- Nov 10 0857-0859 (3m) All channels 0441-0444 (4m); 0900-2037 (11h 38m) F only
- Dec 10 0455-0529 (35m) All channels 0530-2109 (15h 40m) F only
- Dec 11 0316-0351 (36m), 0411-0419 (9m) All channels 0352-0410 (19m); 0420-0441 (22m) F only
- Dec12 0716-0855 (01h 40m) All channels 0856-2131 (12h 36m) F only

Data contaminated by activities near variometers such as tunnel repairs so processing inhibited (total 10d 03h 42m).

- Feb 04 1325 to 07/0935 (2d 20h 11m)
- Feb 21 2136-2331 (01h 55m)
- Mar 10 0404-0411 (8m)
- Mar 17 0405 (1m), 0504-0505 (02m)
- Mar 23 0110-0117 (8m), 0211 (1m)
- Nov 26 2200 to Dec 03/0459 (6d 07h 00m)
- Dec 05 0436-0439 (4m)
- Dec 11 0215-0219 (5m)
- Dec 12 0713-0719 (7m)
Charters Towers Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month.

Plots of these data with secular variation in H, D, Z & F are on pages 36-37.

Zero instrument corrections have been applied to the baselines used in the calculation of the CTA annual mean values.

Year	Days		D		1	н	X	Y	Z	F	Elts
	,	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1983.729) A	7	40.4	-50	17.7	31786	31501	4244	-38280	49756	XYZ
1984.5	А	7	41.9	-50	18.2	31777	31491	4256	-38280	49751	XYZ
1985.5	A	7	43.2	-50	18.0	31776	31488	4268	-38276	49747	XYZ
1986.5	А	7	44.4	-50	18.4	31768	31479	4278	-38274	49740	XYZ
1987.5	A	7	45.5	-50	18.2	31769	31478	4288	-38271	49738	XYZ
1988.5	A	7	46.3	-50	19.2	31751	31459	4294	-38270	49727	XYZ
1989.5	A	7	47.0	-50	20.1	31731	31439	4297	-38267	49711	XYZ
1990.5	A	7	47.2	-50	19.8	31731	31438	4299	-38260	49706	XYZ
1991.5	Α	7	47.4	-50	19.8	31719	31427	4299	-38248	49689	XYZ
1992.5	A	7	47.3	-50	18.0	31732	31439	4300	-38221	49676	XYZ
1993.5	А	7	47.4	-50	15.9	31743	31450	4303	-38188	49658	XYZ
1994.5	Α	7	47.6	-50	14.1	31748	31455	4305	-38151	49633	XYZ
1995.5	A	7	47.7	-50	11.1	31770	31476	4309	-38112	49617	XYZ
1996.5	A	7	47.4	-50	8.1	31793	31500	4309	-38071	49600	XYZ
1997.5	A	7	47.0	-50	5.5	31803	31510	4307	-38024	49571	XYZ
1998.5	A	7	46.5	-50	3.0	31805	31513	4302	-37972	49532	XYZ
1999.5	A	7	45.5	-49	59.8	31816	31525	4295	-37913	49494	XYZ
2000.5	A	7	44.8	-49	58.0	31810	31520	4288	-37866	49455	ABC
2001.5	A	7	44.5	-49	55.8	31817	31527	4286	-37823	49426	ABC
		7			17.0	31797			-38278		XYZ
1983.729		-	40.7	-50			31512	4249		49761	
1984.5	Q	7	41.9	-50	17.5	31788	31502	4258	-38278	49756	XYZ
1985.5	Q	7	43.2	-50	17.4	31787	31499	4270	-38274	49752	XYZ
1986.5	Q	7	44.4	-50	17.8	31778	31489 31486	4280	-38272	49745	XYZ
1987.5	Q	7	45.5	-50	17.7	31776		4289	-38269	49742	XYZ
1988.5	Q	7	46.4	-50	18.3	31764	31472	4296	-38268	49733	XYZ
1989.5	Q	7	47.0	-50	19.1	31746	31454	4299	-38265	49719	XYZ
1990.5	Q	7	47.3	-50	18.8	31746	31454	4302	-38257	49714	XYZ
1991.5	Q	7	47.3	-50	18.6	31739	31446	4301	-38244	49698	XYZ
1992.5	Q	7	47.4	-50	17.1	31746	31453	4303	-38218	49683	XYZ
1993.5	Q	7	47.4	-50	15.3	31754	31461	4304	-38185	49663	XYZ
1994.5	Q	7 7	47.6 47.7	-50	13.2	31762	31469	4307 4310	-38148 -38109	49640	XYZ XYZ
1995.5	Q			-50	10.4	31781	31488			49622	
1996.5	Q	7	47.4	-50	7.7	31799	31506	4310	-38070	49603	XYZ XYZ
1997.5	Q	7 7	46.9	-50	4.9	31812	31519	4308	-38023	49576	XYZ
1998.5 1999.5	Q	7	46.4 45.5	-50	2.5 59.3	31815	31522	4303	-37971	49537	XYZ
	Q			-49		31825	31534	4296	-37911	49499	
2000.5	Q	7	44.8	-49	57.2	31823	31533	4290	-37864	49461	ABC
2001.5	Q	7	44.6	-49	54.9	31831	31540	4289	-37821	49433	ABC
1983.729		7	39.9	-50	18.7	31769	31485	4237	-38281	49746	XYZ
1984.5	D	7	41.8	-50	19.4	31756	31470	4253	-38283	49740	XYZ
1985.5	D	7	43.1	-50	18.9	31761	31474	4266	-38277	49739	XYZ
1986.5	D	7	44.4	-50	19.3	31752	31463	4276	-38276	49732	XYZ
1987.5	D	7	45.4	-50	18.9	31757	31467	4286	-38272	49732	XYZ
1988.5	D	7	46.3	-50	20.4	31731	31439	4291	-38274	49716	XYZ
1989.5	D	7	46.9	-50	22.2	31696	31404	4292	-38272	49693	XYZ
1990.5	D	7	47.1	-50	21.1	31707	31415	4295	-38263	49693	XYZ
1991.5	D	7	47.4	-50	21.8	31687	31394	4295	-38253	49672	XYZ
1992.5	D	7	47.3	-50	19.5	31706	31414	4297	-38225	49663	XYZ
1993.5	D	7	47.4	-50	17.2	31723	31430	4299	-38191	49648	XYZ
1994.5	D	7	47.6	-50	15.1	31730	31437	4302	-38154	49624	XYZ
1995.5	D	7	47.7	-50	12.0	31755	31462	4307	-38114	49609	XYZ
1996.5	D	7	47.4	-50	8.6	31784	31491	4308	-38072	49595	XYZ
1997.5	D	7	47.0	-50	6.4	31788	31495	4305	-38026	49563	XYZ
1998.5	D	7	46.5	-50	4.4	31782	31490	4299	-37976	49520	XYZ
1999.5	D	7	45.5	-50	1.0	31797	31506	4293	-37916	49484	XYZ
2000.5	D	7	44.8	-49	59.7	31783	31493	4284	-37870	49440	ABC
2001.5	D	7	44.3	-49	57.2	31792	31502	4281	-37826	49412	ABC

Charters Towers 2001 Monthly & Annual Mean Values

The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

January All days 31543.1 4287.9 -37840.5 49449.5 31833.2 7° 44.5' -49° 55.7' February All days 31534.6 4293.0 -37839.2 49441.9 31822.9 7° 44.1' -49° 55.7' February All days 31533.4 4292.3 -37839.2 49443.2 31830.1 7° 45.0' -49° 55.7' SxD days 31547.4 4296.8 -37839.3 49435.5 31816.4 7° 45.0' -49° 56.2' March All days 31520.6 4281.5 -37833.3 4942.7 31810.9 7° 44.4' -49° 56.5' SxD days 31460.6 4277.8 -37832.1 4940.5 3182.0 7° 44.6' -49° 57.6' SxD days 31504.1 4286.3 -37832.7 49421.7 3179.0 7° 44.6' -49° 55.7' SxD days 31512.6 4286.3 -37832.7 49421.7 31791.0 7° 44.6' -49° 55.9' SxD days 31512.4 4282.4 -37821.4 49431.0 31818.4<	harters Towers	2001	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	1
SxD days 3153.4 4283.0 -37839.2 49441.9 31822.9 7* 44.1' -49° 56.2' February All days 3153.3 4292.3 -37834.9 49443.2 31830.1 7* 45.0' -49° 55.6' SxD days 3152.0 4298.6 -37833.3 49435.5 31810.4 7* 44.8' -49° 55.1' SxD days 3152.0 4288.6 -37833.3 49425.7 31810.9 7* 44.8' -49° 55.2' SxD days 3150.1 4283.5 -37837.1 49421.7 31810.7 7* 44.6' -49° 55.2' SxD days 3150.1 4283.9 -37837.1 49421.7 3179.0 7* 44.6' -49° 55.9' SxD days 3150.1 4283.9 -37837.1 49421.1 31181.7 7* 44.6' -49° 55.3' SxD days 3150.1 4280.4 -3782.2' 4943.1 31181.7 7* 44.6' -49° 55.3' SxD days 3151.7 4280.1 -3782.7 4943.5 3182.4 7* 44.6' -49° 55.5'	January	All days	31543.1	4287.9	-37840.5	49449.5	31833.2	7° 44.5'	-49° 55.7'
February All days 31539.3 31547.4 5xQ days 4292.3 31547.4 31526.0 37834.9 4296.8 37834.9 49443.2 49484.8 31830.7 31830.1 7" 45.0' 7" 44.8' 4-9" 55.1' -49" 55.1' 7" 44.8' March All days 31520.0 4287.5 -37833.3 49429.7 31810.4 7" 44.8' -49" 55.1' -49" 55.1' March All days 31520.6 4287.5 -37833.3 49429.7 31810.6 7" 44.8' -49" 55.1' SxQ days 31540.6 4277.8 -37839.4 49395.3 31750.1 7" 44.6' -49" 57.6' SxQ days 31501.1 4280.4 -37837.1 49429.1 31760.5 7" 44.6' -49" 55.9' SxQ days 31538.1 4280.1 -37828.8 49431.0 31818.4 7" 44.6' -49" 55.3' SxQ days 31538.1 4289.1 -37828.8 49417.1 3179.0 7" 44.6' -49" 55.5' SxQ days 31538.7 4285.3 -37827.7 49428.6 3182.8 7" 44.7' -49" 55.5' June All days 31538.7 <td></td> <td>5xQ days</td> <td>31554.6</td> <td>4293.9</td> <td>-37841.3</td> <td>49458.0</td> <td>31845.4</td> <td>7° 44.9'</td> <td>-49° 55.1'</td>		5xQ days	31554.6	4293.9	-37841.3	49458.0	31845.4	7° 44.9'	-49° 55.1'
5xQ days 5xD days 31547.4 31526.0 4288.6 4288.6 -37838.3 -37838.3 49448.8 49435.5 31881.6 7* 44.8 7* 45.4 49* 56.4 March 5xQ days All days 3152.0.6 4287.5 4281.0 -37833.3 37833.3 49429.7 49440.5 31810.9 31832.6 7* 44.8 -49* 56.4' 49* 55.2' April All days 5xQ days 31520.6 4287.5 -37833.4 49421.7 31794.0 7* 44.6' -49* 55.2' May All days 31520.6 4288.3 -37832.7 49421.7 31794.0 7* 44.6' -49* 55.2' May All days 31520.6 4288.3 -37832.7 49421.7 31766.5 7* 44.6' -49* 55.9' May All days 31520.6 4288.4 -37828.8 49431.0 31818.4 7* 44.6' -49* 55.3' SxD days 3153.1 4287.2 -37828.7 49435.4 31829.4 7* 44.6' -49* 55.2' June All days 3153.7 4287.2 -37821.8 49430.3 31829.4 7* 44.4' -49* 55.2' SxD days 3153.		5xD days	31533.4	4283.0	-37839.2	49441.9	31822.9	7° 44.1'	-49° 56.2'
5xD days 31526.0 4288.6 -37836.3 49435.5 31816.4 7° 44.8' -49° 56.4' March All days 31520.6 4287.5 -37833.3 49429.7 31810.9 7° 44.8' -49° 56.5' SxD days 31542.0 4291.9 -37832.2 49440.5 31832.6 7° 44.6' -49° 57.6' April All days 3150.4.1 4283.9 -37832.7 49429.1 31810.7 7° 44.6' -49° 57.6' SxD days 31520.6 4288.0 -37832.7 49429.1 3181.4 7° 44.6' -49° 55.3' May All days 31528.3 4287.0 -37828.8 49431.0 3188.4 7° 44.6' -49° 55.3' SxD days 31531.7 4287.2 -37828.7 49432.3 3182.8 7° 44.6' -49° 55.5' June All days 3153.7 4287.2 -37823.7 49417.1 31791.0 7° 44.6' -49° 55.5' Juny All days 3153.7 4285.5 -37818.4 49432.3 <t< td=""><td>February</td><td>All days</td><td>31539.3</td><td>4292.3</td><td>-37834.9</td><td>49443.2</td><td>31830.1</td><td>7° 45.0'</td><td>-49° 55.6'</td></t<>	February	All days	31539.3	4292.3	-37834.9	49443.2	31830.1	7° 45.0'	-49° 55.6'
March All days 5x0 days 5x0 days 31520.6 31542.0 5x0 days 4287.5 31542.0 31460.6 -37833.3 4291.9 -37839.4 49429.7 49395.3 3180.0 31832.6 31750.1 7° 44.8 7° 44.9 -49° 55.2 -50° 00.1 April All days 5x0 days 31504.1 4283.9 4283.9 -37837.1 49421.7 49421.7 31790.0 7° 44.6 -49° 55.2' -50° 00.1 May All days 5x0 days 31526.3 31581.1 4280.4 -37828.8 4941.7 31791.0 7° 44.6' -49° 55.9' -446' -49° 55.9' -49° 55.9' May All days 5x0 days 31528.3 31531.7 4282.1 -37828.2 49431.0 31818.4 7° 44.6' -49° 55.9' -49° 57.6' June All days 31531.7 4287.2 -37823.8 49420.8 31828.1 7° 44.6' -49° 55.0' July All days 31538.7 4285.5 -37821.4 49423.3 31828.1 7° 44.6' -49° 55.5' July All days 31538.0 4285.5 -37812.4 49423.3 3182.8 7° 44.4' -49° 55.5' July All days 3153.9 42		5xQ days	31547.4	4296.8	-37834.9	49448.8	31838.7	7° 45.4'	-49° 55.1'
5xQ days 31542.0 4291.9 -37829.2 49440.5 31832.6 7° 44.9' -60° 00.1' April All days 31504.1 4283.9 -37837.1 49421.7 31790.0 7° 44.6' -49° 55.2' 5xQ days 31520.6 4286.3 -37837.1 49421.7 31790.0 7° 44.6' -49° 55.5' 5xQ days 31476.8 4280.0 -37828.8 4941.0 31818.4 7° 44.6' -49° 55.9' May All days 31538.1 4280.1 -37828.7 49428.6 3182.8 7° 44.6' -49° 55.7' June All days 31531.7 4282.3 -3782.7 49428.6 3182.8 7° 44.6' -49° 55.7' June All days 31537.7 4287.2 -3782.7 49428.6 3182.8 7° 44.6' -49° 55.2' July All days 31535.0 4285.5 -37814.3 49423.3 3182.8 7° 44.6' -49° 55.2' July All days 3153.8 4285.5 -37814.3 49423.3 3182.8 7° 44.3' -49° 55.5' August All days </td <td></td> <td>5xD days</td> <td>31526.0</td> <td>4288.6</td> <td>-37836.3</td> <td>49435.5</td> <td>31816.4</td> <td>7° 44.8'</td> <td>-49° 56.4'</td>		5xD days	31526.0	4288.6	-37836.3	49435.5	31816.4	7° 44.8'	-49° 56.4'
5xD days 31460.6 4277.8 -37839.4 49395.3 31750.1 7° 44.6' -50° 00.1' April All days 31504.1 4283.9 -37837.1 49421.7 31794.0 7° 44.6' -49° 57.6' 5xD days 31520.6 4286.3 -37832.7 49429.1 31810.7 7° 44.6' -49° 55.9' May All days 31528.3 4287.0 -3782.7 49493.1 31818.4 7° 44.6' -49° 55.9' SxD days 31538.1 4289.1 -3782.2 49435.4 3182.8 7° 44.6' -49° 55.7' June All days 31537.7 4287.2 -3782.7 4942.8 3182.1 7° 44.6' -49° 55.5' June All days 31538.7 4289.5 -3782.7 4942.8 3182.1 7° 44.6' -49° 55.5' July All days 31538.0 4285.5 -3781.4 49432.3 3182.1 7° 44.3' -49° 55.5' July All days 3153.8 4285.5 -3781.4 4943.3	March	All days	31520.6	4287.5	-37833.3	49429.7	31810.9	7° 44.8'	-49° 56.5'
April All days 31504.1 4283.9 -37837.1 49421.7 31794.0 7° 44.6' -49° 57.6' 5xD days 31476.8 4280.4 -37832.7 49429.1 31810.7 7° 44.6' -49° 56.5' May All days 31528.3 4287.0 -37828.8 49431.0 31818.4 7° 44.6' -49° 55.9' 5xD days 31531.1 4287.2 -37833.7 49417.1 131791.0 7° 44.6' -49° 55.9' June All days 31531.7 4287.2 -37833.7 49417.1 131791.0 7° 44.6' -49° 55.0' June All days 31531.7 4287.2 -37822.7 49428.6 31821.8 7° 44.6' -49° 55.0' 5xD days 31538.7 4285.9 -3782.7 49428.8 31808.4 7° 44.3' -49° 55.0' July All days 31538.7 4285.9 -3781.4 49420.8 31808.4 7° 44.3' -49° 55.5' July All days 3153.7 4285.1 -3781.4 49423.3 3182.6 7° 44.3' -49° 55.5' August All		5xQ days	31542.0	4291.9	-37829.2	49440.5	31832.6	7° 44.9'	-49° 55.2'
5xQ days 3152.0.6 4286.3 -37832.7 49429.1 31810.7 7° 44.6' -49° 56.5' May All days 3152.3 4280.0 -37831.5 49407.4 31766.5 7° 44.6' -49° 55.9' SxQ days 31538.1 4280.1 -37826.2 49435.4 31828.4 7° 44.6' -49° 55.3' June All days 31531.7 4282.3 -37833.7 49417.1 31707.10 7° 44.6' -49° 55.5' June All days 31531.7 4282.3 -37826.2 9442.8 3182.8 7° 44.6' -49° 55.5' SxQ days 31538.7 4285.9 -3782.7 4942.8 3182.8 7° 44.6' -49° 55.0' July All days 3153.0 4285.4 -3781.3 4942.8 3180.8.4 7° 44.3' -49° 55.5' SxQ days 3153.9 4285.5 -3781.4 4942.3 3182.8 7° 44.3' -49° 55.5' July All days 3153.9 4284.5 -3781.3 4942.3 3182.6 7° 44.3' -49° 55.5' SxQ days 3153.7 4281.1		5xD days	31460.6	4277.8	-37839.4	49395.3	31750.1	7° 44.6'	-50° 00.1'
5xD days 31476.8 4280.4 -37841.5 49407.4 31766.5 7° 44.6' -49° 59.3' May All days 31528.3 4287.0 -37828.8 49431.0 31818.4 7° 44.6' -49° 55.9' SxD days 31501.2 4282.3 -37823.7 49417.1 31791.0 7° 44.6' -49° 55.3' June All days 31538.7 4289.5 -37821.4 49428.6 31821.8 7° 44.6' -49° 55.0' SxQ days 31538.7 4285.9 -37823.8 49420.8 31829.1 7° 44.6' -49° 55.2' July All days 31535.0 4285.4 -37817.2 4942.8 31824.8 7° 44.6' -49° 55.2' July All days 31535.0 4285.5 -37818.4 4940.3 31824.8 7° 44.3' -49° 55.5' August All days 3153.9 4285.5 -37814.3 4942.8 3181.0 7° 44.4' -49° 55.5' September All days 31531.2 4281.1 -37815.1 49425.2 31824.8 7° 44.2' -49° 55.7' SxD days <t< td=""><td>April</td><td></td><td>31504.1</td><td>4283.9</td><td>-37837.1</td><td>49421.7</td><td>31794.0</td><td>7° 44.6'</td><td>-49° 57.6'</td></t<>	April		31504.1	4283.9	-37837.1	49421.7	31794.0	7° 44.6'	-49° 57.6'
May All days SxQ days SxD days 31528.3 31538.1 SxD days 4287.0 31501.2 -37828.8 4282.3 49431.0 -37826.2 31818.4 49435.4 7° 44.6' 31828.4 -49° 55.9' 7° 44.5' June All days SxD days 31531.7 31518.3 4287.2 4289.5 -37827.7 37821.4 49432.3 31821.8 7° 44.6' 44.6' 49° 55.5' 49° 55.6' June All days SxD days 31518.3 4285.9 -37823.8 49420.8 31808.4 7° 44.6' 49° 55.5' 49° 55.0' July All days SxQ days 31539.8 4285.5 -37818.4 49420.8 31824.8 7° 44.3' 49° 55.2' July All days 31539.8 4285.5 -37818.4 49427.8 31824.8 7° 44.3' 49° 55.2' August All days 31539.8 4285.5 -37818.4 49427.8 31824.8 7° 44.3' 49° 55.5' September All days 31539.7 4285.0 -37812.8 49425.2 31828.6 7° 44.3' 49° 55.0' September All days 31531.2 4287.1 -37810.4 49418.9		5xQ days	31520.6	4286.3	-37832.7	49429.1	31810.7	7° 44.6'	-49° 56.5'
5xQ days 31538.1 4289.1 -37826.2 49435.4 31828.4 7° 44.7' -49° 55.3' June All days 31531.7 4282.3 -37833.7 49417.1 31791.0 7° 44.5' -49° 55.5' June All days 31531.7 4287.2 -3782.7 49428.6 31821.8 7° 44.6' -49° 55.5' July All days 31531.7 4285.9 -37821.4 49422.8 31820.1 7° 44.6' -49° 55.2' July All days 31535.0 4285.4 -37819.7 49427.8 31824.8 7° 44.6' -49° 55.2' August All days 31538.7 4285.5 -3781.4' 49423.3 3182.6 7° 44.2' -49° 55.5' August All days 31538.7 4285.0 -3781.4'' 49423.3 3182.8'' 7° 44.2' -49° 55.5' September All days 31531.2 4287.1 -3781.4''' 49424.8 31814.5''''''''''''''''''''''''''''''''''''		5xD days	31476.8	4280.4	-37841.5	49407.4	31766.5	7° 44.6'	-49° 59.3'
5xD days 31501.2 4282.3 -37833.7 49417.1 31791.0 7° 44.5' -49° 57.6' June All days 31531.7 4287.2 -37822.7 49428.6 31821.8 7° 44.6' -49° 55.5' 5xQ days 31518.3 4285.9 -37823.8 49420.8 31808.4 7° 44.6' -49° 55.2' July All days 31535.0 4285.4 -37819.2 49427.8 31824.8 7° 44.3' -49° 55.5' SxQ days 31539.8 4285.5 -37818.4 49430.3 31829.6 7° 44.3' -49° 55.5' August All days 3153.9 4284.5 -37814.3 49422.3 3182.6 7° 44.2' -49° 55.5' August All days 3153.9 4284.5 -37814.3 4942.3 3182.4 7° 44.2' -49° 55.5' SxD days 31537.7 4285.0 -37815.1 49418.4 31815.0 7° 44.2' -49° 55.5' Suptomber All days 31531.2 4287.1 -37808.9 49426.0 31824.1 7° 44.7' -49° 56.1' SxQ days 31543.7	Мау	All days	31528.3	4287.0	-37828.8	49431.0	31818.4	7° 44.6'	-49° 55.9'
June All days 31531.7 4287.2 -37822.7 49428.6 31821.8 7° 44.6' -49° 55.5' July All days 31538.7 4289.5 -37823.8 49420.8 31829.1 7° 44.6' -49° 55.2' July All days 31535.0 4285.4 -37819.2 49427.8 31824.8 7° 44.3' -49° 55.2' July All days 3153.9 4285.5 -37818.4 49430.3 31829.6 7° 44.3' -49° 55.5' August All days 3153.9 4285.5 -37814.3 49423.3 31823.6 7° 44.2' -49° 55.5' August All days 3153.7 4285.0 -37815.1 49428.6 31821.6 7° 44.2' -49° 55.5' September All days 31531.2 4287.1 -37815.1 49418.9 3182.13 7° 44.6' -49° 55.1' Scd days 31543.7 429.0 -37815.0 49418.9 3182.13 7° 44.6' -49° 55.1' Scd days 31543.7 4280.0 -37815.0 49418.9 3182.13 7° 44.6' -49° 56.1' <t< td=""><td></td><td>5xQ days</td><td>31538.1</td><td>4289.1</td><td>-37826.2</td><td>49435.4</td><td>31828.4</td><td>7° 44.7'</td><td>-49° 55.3'</td></t<>		5xQ days	31538.1	4289.1	-37826.2	49435.4	31828.4	7° 44.7'	-49° 55.3'
5xQ days 31538.7 4289.5 -37821.4 49432.3 31829.1 7° 44.7' -49° 55.0' July All days 31538.0 4285.9 -37823.8 49420.8 31808.4 7° 44.6' -49° 56.2' July All days 31535.0 4285.4 -37819.2 49427.8 31824.8 7° 44.3' -49° 55.2' SxQ days 31539.8 4285.5 -37818.4 49430.3 31829.6 7° 44.3' -49° 55.5' August All days 31539.9 4284.5 -37814.3 49423.3 31828.6 7° 44.3' -49° 55.5' SxD days 31539.7 4284.5 -37814.3 49425.2 31828.4 7° 44.2' -49° 55.5' August All days 31531.2 4287.1 -37815.1 49418.4 31815.0 7° 44.6' -49° 55.0' 5xD days 31543.7 4290.4 -37808.9 49426.0 31834.1 7° 44.6' -49° 56.1' October All days 31534.0 4285.7 -37808.1 49406.0 31797.6 7° 44.3' -49° 56.1' October All days <td></td> <td>5xD days</td> <td>31501.2</td> <td>4282.3</td> <td>-37833.7</td> <td>49417.1</td> <td>31791.0</td> <td>7° 44.5'</td> <td>-49° 57.6'</td>		5xD days	31501.2	4282.3	-37833.7	49417.1	31791.0	7° 44.5'	-49° 57.6'
5xD days 31518.3 4285.9 -37823.8 49420.8 31808.4 7° 44.6' -49° 56.2' July All days 31535.0 4285.4 -37819.2 49427.8 31824.8 7° 44.3' -49° 55.2' SxQ days 31539.8 4285.5 -37818.4 49430.3 31829.6 7° 44.3' -49° 55.2' August All days 31539.8 4285.5 -37814.3 49423.3 31823.6 7° 44.2' -49° 55.5' SxQ days 31537.7 4285.0 -37815.1 49425.2 31828.4 7° 44.2' -49° 55.5' September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.0' SxQ days 31543.7 4290.4 -37808.9 49426.0 31834.1 7° 44.6' -49° 56.0' SxQ days 3154.1 4284.0 -37815.0 49411.2 31803.9 7° 44.5' -49° 56.0' September All days 31508.0 4281.8 -37813.6 49406.0 31797.6 7° 44.5' -49° 56.1' October All days 31545	June	All days	31531.7	4287.2	-37822.7	49428.6	31821.8	7° 44.6'	-49° 55.5'
July All days 31535.0 4285.4 -37819.2 49427.8 31824.8 7° 44.3' -49° 55.2' August All days 31539.8 4285.5 -37818.4 49423.3 31824.6 7° 44.3' -49° 55.5' August All days 31539.8 4285.5 -37814.3 49423.3 31824.6 7° 44.3' -49° 55.5' September All days 31537.9 4285.0 -37814.3 49423.3 3182.6 7° 44.2' -49° 55.5' September All days 31537.2 4285.0 -37810.4 49418.4 31815.0 7° 44.3' -49° 55.5' September All days 31537.7 4285.0 -37810.4 49418.9 31821.3 7° 44.6' -49° 56.4' SxC days 3154.7 4290.4 -37810.4 49418.9 3182.1.3 7° 44.3' -49° 56.4' SxD days 3154.1 4286.1 -3781.6 49448.0 3182.1.3 7° 44.4' -49° 56.4' October All days 3158.0 4281.8 -3781.6 49406.0 31797.6 7° 44.3' -49° 56.4'		5xQ days	31538.7	4289.5	-37821.4	49432.3	31829.1	7° 44.7'	-49° 55.0'
5xQ days 31539.8 4285.5 -37818.4 49430.3 31829.6 7° 44.3' -49° 54.9' August All days 31529.8 4284.1 -37819.7 49424.8 31819.5 7° 44.3' -49° 55.5' August All days 31533.9 4284.5 -37814.3 49423.3 31823.6 7° 44.2' -49° 55.5' SxQ days 31535.7 4285.0 -37812.8 49425.2 3182.4 7° 44.2' -49° 55.5' September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.0' 5xQ days 31514.1 4280.0 -37815.0 49418.9 31821.3 7° 44.6' -49° 55.0' 5xQ days 31514.1 4284.0 -37815.0 49411.2 31803.9 7° 44.4' -49° 56.1' October All days 31508.0 4281.8 -37813.6 49406.0 31797.6 7° 44.3' -49° 56.4' 5xQ days 31545.0 4282.1 -37813.6 49409.8 31802.4 7° 44.3' -49° 56.4' 5xD days 31545.3 4282.		5xD days	31518.3	4285.9	-37823.8	49420.8	31808.4	7° 44.6'	-49° 56.2'
5xD days 31529.8 4284.1 -37819.7 49424.8 31819.5 7° 44.3' -49° 55.5' August All days 31533.9 4284.5 -37814.3 49423.3 31823.6 7° 44.2' -49° 55.5' September All days 31538.7 4285.0 -37812.8 49425.2 31828.4 7° 44.2' -49° 55.5' September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.5' September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.5' September All days 3151.2 4287.1 -37815.0 49426.0 31834.1 7° 44.6' -49° 56.1' SxD days 31514.1 4284.0 -37815.0 49411.2 31803.9 7° 44.4' -49° 56.4' SxQ days 31524.0 4281.8 -37815.0 49406.0 31797.6 7° 44.3' -49° 56.4' SxQ days 3154.0 4281.8 -37805.1 49406.0 31797.6 7° 44.3' -49° 56.1' SxQ days <th< td=""><td>July</td><td>All days</td><td>31535.0</td><td>4285.4</td><td>-37819.2</td><td>49427.8</td><td>31824.8</td><td>7° 44.3'</td><td>-49° 55.2'</td></th<>	July	All days	31535.0	4285.4	-37819.2	49427.8	31824.8	7° 44.3'	-49° 55.2'
August All days 31533.9 4284.5 -37814.3 49423.3 31823.6 7° 44.2' -49° 55.0' SxD days 31538.7 4285.0 -37815.1 49425.2 31828.4 7° 44.2' -49° 55.5' September All days 31531.2 4287.1 -37815.1 49418.9 31821.3 7° 44.6' -49° 55.5' September All days 31531.2 4287.1 -37815.0 49426.0 31834.1 7° 44.6' -49° 55.5' SoxD days 31514.1 4284.0 -37815.0 49418.9 31821.3 7° 44.5' -49° 56.1' October All days 31508.0 4281.8 -37813.6 49406.0 31797.6 7° 44.3' -49° 56.4' SxQ days 31534.0 4281.8 -37812.2 49379.8 31747.8 7° 44.3' -49° 56.4' Movember All days 31512.8 4282.1 -37814.4 49408.8 31802.4 7° 44.3' -49° 56.1' November All days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' <th< td=""><td></td><td>5xQ days</td><td>31539.8</td><td>4285.5</td><td>-37818.4</td><td>49430.3</td><td>31829.6</td><td>7° 44.3'</td><td>-49° 54.9'</td></th<>		5xQ days	31539.8	4285.5	-37818.4	49430.3	31829.6	7° 44.3'	-49° 54.9'
5xQ days 31538.7 4285.0 -37812.8 49425.2 31828.4 7° 44.2' -49° 54.7' September All days 31525.6 4281.1 -37815.1 49418.4 31815.0 7° 44.0' -49° 55.5' September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.0' 5xD days 31514.1 4284.0 -37808.9 49426.0 31834.1 7° 44.5' -49° 56.1' October All days 31508.0 4281.8 -37815.0 49406.0 31797.6 7° 44.3' -49° 56.4' 5xQ days 31534.0 4285.7 -37808.1 49406.0 31797.6 7° 44.3' -49° 56.4' 5xD days 31543.0 4285.7 -37808.1 49408.8 31824.0 7° 44.3' -49° 56.4' SxD days 31545.3 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' November All days 31545.3 4282.1 -3780.6 49427.3 31835.4 7° 44.5' -49° 54.5' 5xD days 31537.7		5xD days	31529.8	4284.1	-37819.7	49424.8	31819.5	7° 44.3'	-49° 55.5'
5xD days 31525.6 4281.1 -37815.1 49418.4 31815.0 7° 44.0' -49° 55.5' September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.5' SxQ days 31543.7 4290.4 -37808.9 49426.0 31834.1 7° 44.7' -49° 56.1' October All days 31508.0 4281.8 -37813.6 49406.0 31797.6 7° 44.5' -49° 56.4' SxQ days 31534.0 4281.8 -37813.6 49406.0 31797.6 7° 44.3' -49° 56.4' SxQ days 31534.0 4285.7 -37808.1 49418.8 31824.0 7° 44.3' -49° 56.4' SxD days 31545.3 4269.2 -37821.2 49379.8 31747.8 7° 43.7' -49° 59.4' November All days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 59.4' December All days 31537.7 4283.3 -37822.8 49379.6 3	August		31533.9	4284.5	-37814.3	49423.3	31823.6	7° 44.2'	-49° 55.0'
September All days 31531.2 4287.1 -37810.4 49418.9 31821.3 7° 44.6' -49° 55.0' 5xQ days 31543.7 4290.4 -37808.9 49426.0 31834.1 7° 44.6' -49° 55.0' 5xD days 31514.1 4284.0 -37815.0 49411.2 31803.9 7° 44.5' -49° 56.1' October All days 31508.0 4281.8 -37813.6 49406.0 31797.6 7° 44.3' -49° 56.4' 5xD days 31534.0 4285.7 -37808.1 49418.8 31824.0 7° 44.3' -49° 56.4' 5xD days 31534.0 4285.7 -37808.1 49405.8 31824.0 7° 44.3' -49° 56.1' November All days 31512.8 4289.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' SxQ days 31545.3 4289.1 -37807.6 49472.3 31835.4 7° 44.5' -49° 56.1' SxQ days 31545.3 4282.1 -37814.4 49409.8 31802.4 7° 44.5' -49° 54.2' December All days 31537.7			31538.7	4285.0	-37812.8	49425.2	31828.4	7° 44.2'	-49° 54.7'
5xQ days 31543.7 4290.4 -37808.9 49426.0 31834.1 7° 44.7' -49° 54.2' 5xD days 31514.1 4284.0 -37815.0 49411.2 31803.9 7° 44.5' -49° 56.1' October All days 31508.0 4281.8 -37815.0 49406.0 31797.6 7° 44.3' -49° 56.4' 5xQ days 31534.0 4285.7 -37808.1 49418.8 31824.0 7° 44.4' -49° 54.7' 5xD days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' November All days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' 5xQ days 31545.3 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' 5xQ days 31545.3 4282.1 -37807.1 49420.2 31835.4 7° 44.3' -49° 54.5' 5xQ days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' 5xQ days 31539.9 4283.6 -37808.2 494		5xD days	31525.6	4281.1	-37815.1	49418.4	31815.0	7° 44.0'	-49° 55.5'
5xD days 31514.1 4284.0 -37815.0 49411.2 31803.9 7° 44.5' -49° 56.1' October All days 31508.0 4281.8 -37813.6 49406.0 31797.6 7° 44.3' -49° 56.4' 5xQ days 31534.0 4285.7 -37808.1 49418.8 31824.0 7° 44.4' -49° 54.4' November All days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' November All days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' 5xQ days 31545.3 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' 5xQ days 31545.3 4282.1 -37809.6 49427.3 31835.4 7° 44.3' -49° 54.2' 5xD days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' 5xQ days 31539.9 4283.6 -37808.2 49420.2 31827.2 7° 44.1' -49° 54.5' 5xQ days 31525.3 4280.8 -37	September	All days	31531.2	4287.1	-37810.4	49418.9	31821.3	7° 44.6'	-49° 55.0'
OctoberAll days $5xQ$ days 31508.0 31534.0 31534.0 31459.5 4281.8 4285.7 4269.2 -37813.6 -37808.1 49418.8 49418.8 31824.0 49379.8 7° 44.3' 7° 44.4' 7° 43.7' -49° 56.4' -49° 54.7' -49° 59.4'NovemberAll days $5xQ$ days 31512.8 31545.3 $5xQ$ days 4282.1 31545.3 4288.1 -37814.4 -37821.2 49409.8 49379.8 31802.4 31802.4 7° 44.3' 7° 44.3' -49° 56.1' -49° 59.4'NovemberAll days $5xQ$ days 31512.8 31456.6 4282.1 4273.6 -37822.8 -37822.8 49409.8 49379.6 31802.4 31745.6 7° 44.3' -49° 54.2' -49° 59.5'DecemberAll days $5xQ$ days 31537.7 31539.9 4283.6 4283.6 -37807.1 -37808.2 49420.2 49422.4 31827.2 31827.2 7° 44.1' -49° 54.5' -49° 55.2'Annual MeanAll days $5xQ$ days 31527.1 31540.2 4285.8 4288.8 -37823.0 -37821.0 49425.8 49432.8 31817.1 31830.5 7° 44.6' -49° 55.7' -49° 55.7'		5xQ days	31543.7	4290.4	-37808.9	49426.0	31834.1	7° 44.7'	-49° 54.2'
5xQ days 5xD days 31534.0 31459.5 4285.7 4269.2 -37808.1 -37821.2 49418.8 49379.8 31824.0 31747.8 $7^{\circ} 44.4'$ $7^{\circ} 43.7'$ $-49^{\circ} 54.7'$ $-49^{\circ} 59.4'$ NovemberAll days $5xQ$ days 31512.8 31545.3 4282.1 4288.1 -37809.6 -37822.8 49409.8 49427.3 31802.4 31835.4 $7^{\circ} 44.3'$ $-49^{\circ} 56.1'$ $-49^{\circ} 54.2'$ DecemberAll days $5xD$ days 31537.7 31539.9 4283.3 4283.6 -37807.1 -37808.2 49420.2 49422.4 31827.2 31827.2 $7^{\circ} 44.1'$ $-49^{\circ} 54.5'$ $-49^{\circ} 54.4'$ $-49^{\circ} 55.2'$ Annual MeanAll days $5xQ$ days 31527.1 31540.2 4285.8 4288.8 -37823.0 -37821.0 49425.8 49432.8 31817.1 31830.5 $7^{\circ} 44.5'$ $-49^{\circ} 55.7'$ $-49^{\circ} 54.9'$		5xD days	31514.1	4284.0	-37815.0	49411.2	31803.9	7° 44.5'	-49° 56.1'
5xD days 31459.5 4269.2 -37821.2 49379.8 31747.8 7° 43.7' -49° 59.4' November All days 31512.8 4282.1 -37814.4 49409.8 31802.4 7° 44.3' -49° 56.1' SxQ days 31545.3 4282.1 -37809.6 49427.3 31835.4 7° 44.5' -49° 54.2' December All days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' SxQ days 31539.9 4283.6 -37808.2 49412.9 31814.6 7° 44.1' -49° 55.2' Annual All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.6' -49° 55.7' Mean 5xQ days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.6' -49° 55.7' Mean 5xQ days 31540.2 4285.8 -37823.0 49425.8 31830.5 7° 44.6' -49° 55.7' Mean	October	All days	31508.0	4281.8	-37813.6	49406.0	31797.6	7° 44.3'	-49° 56.4'
NovemberAll days $5xQ days$ 31512.8 31545.3 4282.1 4288.1 -37814.4 -37809.6 49409.8 49427.3 31802.4 31835.4 $7^{\circ} 44.3'$ $7^{\circ} 44.5'$ $-49^{\circ} 56.1'$ $-49^{\circ} 54.2'$ $-49^{\circ} 59.5'$ DecemberAll days $5xQ days$ 31537.7 31539.9 4283.3 4283.6 -37807.1 -37808.2 49420.2 49422.4 31827.2 31829.5 $7^{\circ} 44.1'$ $-49^{\circ} 54.5'$ $-49^{\circ} 55.2'$ Annual MeanAll days $5xQ days$ 31527.1 31540.2 4285.8 4288.8 -37823.0 -37821.0 49425.8 49432.8 31817.1 31830.5 $7^{\circ} 44.5'$ $-49^{\circ} 55.7'$ $-49^{\circ} 55.7'$		5xQ days	31534.0	4285.7	-37808.1	49418.8	31824.0	7° 44.4'	-49° 54.7'
5xQ days 31545.3 4288.1 -37809.6 49427.3 31835.4 7° 44.5' -49° 54.2' December All days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' SxD days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' SxQ days 31539.9 4283.6 -37808.2 49420.2 31827.2 7° 44.1' -49° 54.4' SxD days 31525.3 4280.8 -37808.2 49412.9 31814.6 7° 44.0' -49° 55.2' Annual Mean All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31540.2 4285.8 -37823.0 49425.8 31817.1 7° 44.6' -49° 55.7'		5xD days	31459.5	4269.2	-37821.2	49379.8	31747.8	7° 43.7'	-49° 59.4'
5xQ days 31545.3 4288.1 -37809.6 49427.3 31835.4 7° 44.5' -49° 54.2' December All days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' SxQ days 31539.9 4283.6 -37808.2 49420.2 31827.2 7° 44.1' -49° 54.5' SxQ days 31539.9 4283.6 -37808.2 49422.4 31829.5 7° 44.1' -49° 54.4' SxD days 31525.3 4280.8 -37808.2 49412.9 31814.6 7° 44.0' -49° 55.2' Annual Mean All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31540.2 4285.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 55.7'	November	All days	31512.8	4282.1	-37814.4	49409.8	31802.4	7° 44.3'	-49° 56.1'
December All days 31537.7 4283.3 -37807.1 49420.2 31827.2 7° 44.1' -49° 54.5' 5xQ days 31539.9 4283.6 -37808.2 49422.4 31829.5 7° 44.1' -49° 54.4' 5xD days 31525.3 4280.8 -37808.2 49412.9 31814.6 7° 44.0' -49° 55.2' Annual Mean All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31540.2 4288.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 55.7'		5xQ days	31545.3	4288.1	-37809.6	49427.3	31835.4	7° 44.5'	-49° 54.2'
5xQ days 31539.9 4283.6 -37808.2 49422.4 31829.5 7° 44.1' -49° 54.4' 5xD days 31525.3 4280.8 -37808.2 49412.9 31814.6 7° 44.0' -49° 55.2' Annual Mean All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31540.2 4288.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 54.9'		5xD days	31456.6	4273.6	-37822.8	49379.6	31745.6	7° 44.2'	-49° 59.5'
5xQ days 31539.9 4283.6 -37808.2 49422.4 31829.5 7° 44.1' -49° 54.4' 5xD days 31525.3 4280.8 -37808.2 49412.9 31814.6 7° 44.0' -49° 55.2' Annual Mean All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31540.2 4288.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 54.9'	December	All days	31537.7	4283.3	-37807.1	49420.2	31827.2	7° 44.1'	-49° 54.5'
5xD days 31525.3 4280.8 -37808.2 49412.9 31814.6 7° 44.0' -49° 55.2' Annual Mean All days 31527.1 4285.8 -37823.0 49425.8 31817.1 7° 44.5' -49° 55.7' Mean 5xQ days 31540.2 4288.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 54.9'		-	31539.9		-37808.2	49422.4		7° 44.1'	-49° 54.4'
Mean 5xQ days 31540.2 4288.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 54.9'		-							
Mean 5xQ days 31540.2 4288.8 -37821.0 49432.8 31830.5 7° 44.6' -49° 54.9'	Δοριμοί		31507 1	1285 9	-37822.0	10125 9	31817 1	70 11 5'	_10° 55 7'
•		-							
		-							

(Calculated:14:34 hrs., Tue. 11 Mar. 2003)

Hourly Mean Values

The charts on the following pages are plots of hourly mean values.

The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.

- 36 -

The Gnangara Magnetic Observatory is located within the Gnangara pine plantation approximately 27km to the north-east of the city of Perth in Western Australia. This places it just a few kilometres from recent urban development. It succeeds the observatory at Watheroo (1919-1959) located 180km north of Perth. Magnetic recording began at Gnangara in 1957. A brief history of the observatory is in *AGR 1994*.

The observatory was built on the north-eastern part of an approximately $260m \times 140m$ (3.6 hectare) site. In 2001 the observatory comprised a Variometer/Recorder Vault and an Absolute House approximately 70m north east of the former. The site is on well drained sand with low natural magnetic gradients of less than 1nT/m, although numerous artificial features have introduced higher gradients.

The Variometer Vault is partially underground, and partially buried under sand. It is approximately 10m x 5m and provides a secure, temperature and physically stable environment. This vault houses the recording equipment, fluxgate variometer sensor and electronics, total field variometer electronics, GPS clock, backup power supply, telephone, and alarm system. A small pit, connected by underground conduit and approximately 20m north-west of the Variometer Vault, housed the total field variometer sensor. As the sensor vaults were below the ground, the diurnal temperature changes of the variometers were kept to a minimum.

There were also four azimuth reference marks on the site.

Key data for the principal observation pier (B) of the observatory are:

- 3-character IAGA code: GNA
- Commenced operation: 1957
- Geographic[‡] latitude: 31° 46' 48" S
- Geographic[‡] longitude: 115° 56' 48" E
- Geomagnetic[†]: Lat. -41.83°; Long. 188.66°
 † Based on the IGRF 2000.0 model updated to 2001.5
- Elevation above mean sea level (top of pier): 60 metres
- Lower limit for K index of 9: 450 nT.
- Azimuth of principal reference pillar (N) from pier B: 315° 21' 42"
- Distance to Pillar B: 70 metres
- Observer in Charge: O. McConnel (GA) and G. van Reeken
- In June 1998 these were measured using GPS as 31° 46' 48.49"S 115° 56' 57.61"E (WGS84) 63.5m above geoid height (OSU91A) at instrument height.

Variometers

Throughout 2001 magnetic field variations were monitored with a Danish Meteorological Institute suspended 3-component FGE model (version D – with sensor no. S0160 & electronics no. E0167) fluxgate variometer, that was located in the Variometer Vault. Two of its sensors were horizontal and aligned at 45° to the magnetic meridian to monitor the magnetic NW and NE components. The other sensor was vertical. The sensors were located at the eastern end of the vault, while the electronic equipment and acquisition PC were confined to the western end. The FGE variometer had in-built sensors for both sensor and electronics temperatures. The analogue outputs of the FGE were digitised using a DT2085-5716A 16-bit PC ISA digitising board.

Variations in the total intensity were monitored with a Geometrics 856 PPM (serial 50706).

The annual temperature range in the Variometer Vault varied from around 15°C in winter to 28°C in summer and the maximum rate of change of temperature was < 0.1°C/day. The F variometer PPM sensor would have had temperature changes greater than this.

Throughout 2001, the fluxgate magnetic channels and sensor and electronics temperatures were sampled and recorded on a PC every 1-second, and the PPM every 10-seconds. 1-minute means of the magnetic components and temperatures were also recorded.

The acquisition computer was accessible via a modem for remote control and data retrieval. The telephone and equipment was protected from lightning and powered through a UPS.

The acquisition computer clock was synchronised to the 1-second pulse from a GPS clock, but the time code from the GPS was not used. Timing errors were normally less than 0.1s. with the exception of a \pm 10-second correction applied at 2357UT 18 Dec. 2001. The error developed from 2211UT on 17 December for unknown reasons but there appeared to be a change in the clock rate at some stage during the 24-hour period.

Absolute Instruments and Corrections

Declination and Inclination Magnetometer (DIM) Bartington Mag-010H/0725H with Zeiss020B/355937 was employed regularly throughout 2001. It was used on Pier B in the Absolute House. The Bartington Mag-01H was left on the x1 scale throughout all observations

PPM Geometrics 856/50631 with sensor 28079922 was employed throughout 2001 to perform absolute observations in total intensity, F. The PPM sensor was located on the auxiliary pier (a wall bracket - Pier C) in the same building as Pier B.

Both the DIM theodolite and the PPM sensor normally remained in place between weekly observations.

The absolute instruments were periodically compared with instruments from the Canberra magnetic observatory, that served as the reference standard for the Australian observatory network.

Corrections of 0.0', 0.0' in D and I, have been applied to the Bartington Mag-010H/0725H with Zeiss020B/355937 absolute DIM used on Pier B at GNA during 2001.

A composite correction has been applied to the absolute PPM used at GNA on the auxiliary pier during 2001. The components of this correction are:

- 0.0nT correction relative to the new Australian Total Field Standard (GEM Systems GSM90 No. 905926 with Sensor No 81241)
- -5.6nT auxiliary pier adjustment to Pier B

This (together with the zero corrections to the DIM) has been applied as a vector pier difference of (-2.2, +0.1, +5.1) nT in (X,Y,Z) to all Gnangara data in this report. The adoption of the new F standard changes X, Y, and Z data by less than 0.5nT.

Baselines

The scale values and orientation of the variometer sensors were determined from a sequence of absolute observations performed in June 1999. No temperature corrections were applied to 2001 data, any temperature effects being accounted for through the weekly absolute observations. Variometer temperature changes between absolute observations averaged less than 0.5° C, and the expected effect on baselines is less than 0.1nT.

The standard deviations of the differences between the absolute measurements in 2001 and the derived values from the variometer data and model are:

The daily average of the difference between F derived from the fluxgate data and F measured by the variometer PPM in 2001 varied from -1.1nT to +1.4nT, with a standard deviation of 0.5nT.

All reported magnetic values in this report refer to the standard pier B.

Operations

The Gnangara magnetic observatory was operated by an outposted GA staff member. Absolute observations were performed on a roster by the OIC and a contract observer.

1-second and 1-minute mean variation data in the magnetic NE, NW, vertical & total intensity magnetic components, with sensor and electronics temperatures, were acquired on a PC at the observatory. These raw data were retrieved by modem directly from the observatory to GA, Canberra shortly after 00UT each day.

The routine processing of absolute observations, production of magnetograms; the scaling of principal magnetic storms, rapid variations and K indices; and the distribution of data, was performed by staff at GA headquarters in Canberra.

Timing was derived from a GPS receiver with antenna at west of vault.

Absolute observations were performed weekly. The stainless steel security door was left open in the same position during observations. Careful examination of absolute observations on 20 and 27 March 2001 indicated that the timepiece used for absolute observations was 1-minute in error. It is not known how often this problem occurred, and it must have added to the scatter in the absolute observations, but probably not the average value. No actual time corrections were made to the observation data.

The feet in the base of the theodolite were adjusted on several occasions. On 23 April 2001, tests showed that the mark reading using the DIM varied by 10' with gentle pressure on the theodolite. The theodolite feet were wound in to minimum extension to reduce the problem. The theodolite base was removed from service on 01 May 2001 and sent to GA, Canberra, where the feet were tightened. The base was returned to Gnangara on 15 May 2001.

The area close to Gnangara observatory is being developed for residential use. Although this currently poses no threat to the observatory in a technical sense, there is an increasing problem with vandalism. Considerable data was lost in 2000 due to vandalism (power cables cut, fires, path-pavers stolen, cars damaged). By the end of 2000, the observers no longer felt safe at the site, and a security firm was engaged to attend during weekly absolute observations to ensure the observer's safety. Although there were no problems with vandalism in 2001, a search for an alternative site began.

An operational oversight allowed the acquisition PC's disc to fill on 10 August, and data collection failed. The system could barely respond to remote investigation, and the cause of the problem could not be determined. The DT2805 analogue-to-digital converter board was changed on 15 August, but this did not fix the problem. The problem was finally found remotely and data collection recommenced on 16 August. No baseline shift was evident from the change of DT2805 board.

Significant Events 2001

- 23 Jan DIM theodolite base adjusted.
- 23 Apr DIM theodolite base adjusted.
- 01 May to 15 May DIM out of service while adjustments to the base made.
- 10 Aug Acquisition computer disc full and data collection failed.
- 15 Aug Changed the acquisition computer. A DT2805 analogue-to-digital converter used to digitise the variometer data channels.
- 16 Aug Acquisition computer disc tidied and data collection recommenced at 0528UT with 15s sample rate. 1s sample rate recommenced at 0129 17 Aug 2001.
- 18 Dec Unexplained 10s drift in the acquisition computer clock.

Distribution of GNA data during 2001

K indices (weekly):

- Regional Warning Centre (IPS) Sydney
- ISGI, Paris, France

Principal Magnetic Storms, Rapid Variations and K indices (monthly)

- World Data Center-A, Boulder, USA
- WDC-C2, Kyoto, Japan
- Ebro Observatory, Roquetas, Spain
- Regional Warning Centre, (IPS) Sydney

1-minute & Hourly Mean Values

• 2000: WDC-A, Boulder, USA (10 April 2001)

Preliminary Monthly Means for Project Ørsted

- Sent monthly by email to IPGP throughout 2001
- **1-minute Values for Project INTERMAGNET**
- Preliminary data to the Edinburgh GIN daily by e-mail.
- Definitive 2000 data for the INTERMAGNET CD-ROM to the DMI (18 April 2001)

Data loss in 2001:

Aug 10 1436 to 16 / 0527 (5d 14h 52m) All channels: Acquisition PC disc full.

K indices

K indices from the Gnangara Magnetic Observatory contribute to the global am-index, and its derivatives.

The table on page 42 shows K indices for Gnangara for 2001. These have been derived by the hand scaling of H and D traces on magnetograms (with a scale of 3nT/mm and 20mm/hr.) produced from the digital data, using the method described by Mayaud (1967).

Rapid Variation Phenomena

Solar Flare Effects (sfe) - GNA 2001

Month & date			Amplitude(nT) H D Z	
Jun. 23	0404 0406	0410	+8 +3 +3	solar
Oct. 19	0054 0110	0145	+3 +150 0	solar
11011 00	0,00 0,01	0.07	$\begin{array}{rrr} +9 & +15 & +12 \\ 0 & +15 & +9 \end{array}$	South
			+6 +30 +18 +3 +6 +3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Sudden Storm Commencements (ssc) - GNA 2001

Mor	nth	U.T.	Туре	&	Chief n	noveme	ent (nT)
& d:	ate		Quali	ity	Н	D	Z
Jan.	17	1630	SSC	А	+24	+15	+15
	23	1048	SSC	В	+42	+12	+12
	31	0806	SSC	В	+45	+33	+33
Mar.	22	1345	SSC	В	+21	+9	+12
Apr.	04	1457	SSC	С	+51	+33	+33
	13	0733	SSC	С	+24	+24	+21
	18	0500	ssc*	С	+30 *	+45 *	+30 *
May	27	1500	SSC	Α	+21	+12	+15
Aug.	03	0715	SSC	С	+30	+30	+27
	17	1103	SSC	С	+24	+12	+9
	27	1948	SSC	С	+36	+30	+27

Month	U.T.	Type &	Chief movement (nT)
& date		Quality	H D Z
Sep. 14	0206 2024	ssc* C ssc* C	+14 +35 * +15 +84 +115 * +81
	1648	ssc B	+75 +51 +33
25	0848	ssc B	+39 +30 +27
28	0318	ssc* B	+30 -18 * +3
31	1348	ssc B	+24 +6 +12
Nov. 15	1509	ssc B	+27 +15 +18
24	0500	ssc* B	+27 +24 * +18
Dec. 29	0539	ssc B	+63 +36 +39
30	2009	ssc* B	+42 +48 * +33

Principal Magnetic Storms - Gnangara, 2001

Commen	cement		SC	amplit	udes	Maximum 3 hr. K in	dex	Ranges	U.T. End
Mth.Day	Hr.Min.	Туре	D(')	H(nT)	Z(nT)	Day (3 hr. periods)	K	D(') H(nT) Z(nT)	Day Hr.
Jan.		No	I	Principa	ıl	Magnetic		Storms	
Feb.		No	I	Principa	ıl	Magnetic		Storms	
Mar. 19 30	11 •• 21 ••		 	 	 	20(5) 31(1,2,6,7,8)	8 6	58.020930248.0363283	20 23 01 09
Apr. 08 11 13	11 •• 13 •• 07 33	 SSC	 +3.5	 +33	 +21	08(5,7,8) 11(6,8) 13(4)	6 7 6	34.7 137 235 43.1 370 262 24.4 136 147	08 22 12 18 13 22
May 08 12	09 •• 06 ••		 	 	••	09(6) 12(5,7)	6 5	21.7 90 113 18.8 108 134	10 03 14 09
Jun. 18	03 ••	•••	••	••	••	18(4)	6	17.1 123 133	19 03
Jul. 25	03 ••	•••	••		••	25(4,6)	5	15.8 83 89	26 16
Aug. 06 17	03 11 03	 SSC	•• +1.3	•• +24	•• +9	06(4,5) 17(7,8)	5 6	13.5579226.6140129	07 03 18 09
Sep. 23 25 30	04 •• 20 24 12 ••	 SSC*	• +15.5* •	•• +84 ••	•• +81 ••	23(7) 25(8), 26(1) 3(4)	6 6 7	20.09613332.917614533.2172249	24 0626 1204 21
Oct. 11 21 28	12 •• 16 48 03 18	ssc ssc*	 +7.5 -2.6*	 +75 +30	•• +33 +3	11(6,7), 12(1,2,5) 21(8) 28(5)	5 7 6	26.817714735.526619426.2147179	13 03 23 09 29 03
Nov. 05 24	09 05 00	 SSC*	 +3.5*	 +27	 +18	06(1) 24(3)	9 8	92.6 426 401 69.1 466 418	07 06 25 12
Dec.		No	I	Principa	ıl	Magnetic		Storms	

Gnangara Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on the pages 48-49. See also *Notes & Errata* on page 1 of this report

Year	Days	I	D		I	н	Х	Y	Z	F	Elts
		(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1993.5	А	-2	54.1	-66	40.3	23184	23155	-1174	-53759	58546	ABC
1994	J		-1.6		1.1	8	7	-11	27	-22	ABC

- 40 -

Year	Days		D			н	X	Y	Z	F	Elts
i cui	Duyo	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	Lito
1004 5	^	0	40 E		44.0	00470	004.40	4400	50777	50550	
1994.5	A	-2	48.5	-66	41.2	23176	23148	-1136	-53777	58558	ABC
1995.5	Α	-2	43.0	-66	40.4	23184	23158	-1098	-53765	58550	ABC
1996.5	Α	-2	37.0	-66	38.8	23208	23184	-1060	-53753	58549	ABC
1997.5	Α	-2	30.8	-66	38.2	23216	23193	-1018	-53743	58543	ABC
1998.5	Α	-2	24.8	-66	38.0	23214	23194	-978	-53731	58531	ABC
1999.5	Α	-2	18.5	-66	36.8	23226	23207	-936	-53707	58514	ABC
2000.5	А	-2	13.6	-66	36	23230	23212	-903	-53682	58493	ABC
2001.5	A	-2	9.0	-66	34.7	23241	23225	-872	-53651	58468	ABC
		-2			52.4						DHZ
1959.5	Q		54.1	-65		23954	23923	-1213	-53482	58603	DHZ
1960.5	Q	-2	53.5	-65	52.1	23959	23928	-1209	-53480	58599	
1961.5	Q	-2	53.3	-65	52.7	23952	23922	-1207	-53491	58606	DHZ
1962.5	Q	-2	52.8	-65	53.0	23945	23915	-1203	-53490	58599	DHZ
1963.5	Q	-2	52.3	-65	54.0	23931	23901	-1199	-53497	58600	DHZ
1964.5	Q	-2	51.7	-65	54.9	23916	23886	-1194	-53501	58599	DHZ
1965.5	Q	-2	51.7	-65	55.3	23906	23876	-1194	-53497	58589	DHZ
1966.5	Q	-2	52.4	-65	56.3	23889	23859	-1198	-53499	58582	DHZ
1967.5	Q	-2	54.1	-65	57.4	23868	23837	-1208	-53499	58572	DHZ
1968.5	ã	-2	55.7	-65	58.6	23843	23812	-1218	-53494	58558	DHZ
1969.5	Q	-2	57.5	-65	59.7	23820	23788	-1229	-53488	58538	DHZ
1969.5											DHZ
	Q	-2	59.7	-66	1.2	23786	23754	-1243	-53475	58516	
1971.5	Q	-3	2.3	-66	2.2	23761	23728	-1259	-53461	58490	DHZ
1972.5	Q	-3	5.2	-66	3.9	23727	23693	-1278	-53454	58467	DHZ
1973.5	Q	-3	7.8	-66	6.2	23686	23651	-1293	-53460	58454	DHZ
1974.5	Q	-3	9.9	-66	9.0	23642	23606	-1305	-53477	58456	DHZ
1975.5	Q	-3	11.5	-66	11.3	23608	23571	-1314	-53496	58457	DHZ
1976.5	Q	-3	12.3	-66	14.2	23567	23530	-1318	-53528	58471	DHZ
1977.5	Q	-3	13.6	-66	17.0	23528	23491	-1324	-53557	58478	DHZ
1978.5	ã	-3	15.1	-66	20.5	23481	23443	-1332	-53596	58499	DHZ
1979.5	Q	-3	16.5	-66	23.1	23444	23406	-1339	-53624	58525	DHZ
1980.5	Q	-3	17.8	-66	25.7	23409	23370	-1346	-53652	58536	DHZ
1981.5	Q	-3	19.1	-66	28.9	23364	23325	-1352	-53685	58549	DHZ
1982.5	Q	-3	20.3	-66	31.9	23321	23281	-1358	-53714	58559	DHZ
1983.5	Q	-3	19.2	-66	33.7	23294	23255	-1349	-53730	58562	DHZ
1984.5	Q	-3	18.9	-66	35.3	23273	23234	-1346	-53752	58574	DHZ
1985.5	Q	-3	17.9	-66	36.5	23258	23219	-1338	-53772	58587	DHZ
1986.5	Q	-3	15.5	-66	38.1	23239	23201	-1321	-53792	58598	DHZ
1987.5	Q	-3	13.5	-66	39.0	23228	23191	-1307	-53806	58606	DHZ
1988.5	Q	-3	11.7	-66	39.9	23214	23178	-1294	-53811	58604	DHZ
1989.5	Q	-3	8.6	-66	40.8	23197	23162	-1272	-53813	58600	DHZ
1990.5	Q	-3	6.1	-66	40.7	23195	23161	-1255	-53802	58588	DHZ
1990.5	Q	-3	2.0	-00 -66	40.7	23195	23161	-1233	-53787	58575	DFI
											DFI
1992.5	Q	-2	58.0	-66	40.0	23193	23162	-1200	-53770	58559	
1993.5	Q	-2	53.9	-66	39.7	23194	23165	-1173	-53757	58547	ABC
1994	J		-1.6		1.1	8	7	-11	27	-22	ABC
1994.5	Q	-2	48.2	-66	40.5	23187	23159	-1134	-53774	58560	ABC
1995.5	Q	-2	42.8	-66	39.8	23194	23168	-1098	-53762	58552	ABC
1996.5	Q	-2	36.9	-66	38.5	23213	23189	-1059	-53752	58550	ABC
1997.5	Q	-2	30.7	-66	37.7	23224	23202	-1018	-53741	58545	ABC
1998.5	Q	-2	24.7	-66	37.5	23223	23202	-977	-53728	58532	ABC
1999.5	Q	-2	18.4	-66	36.3	23234	23215	-935	-53705	58515	ABC
2000.5	ã	-2	13.5	-66	35.4	23240	23223	-902	-53679	58494	ABC
2000.0	Q	-2	8.8	-66	34.1	23252	23235	-871	-53648	58470	ABC
1993.5	D	-2	54.4	-66	41.3	23167	23138	-1175	-53763	58542	ABC
1994	J		-1.6		1.1	8	7	-11	27	-22	ABC
1994.5	D	-2	48.9	-66	42.0	23162	23134	-1137	-53780	58556	ABC
1995.5	D	-2	43.3	-66	41.2	23171	23144	-1100	-53768	58548	ABC
1996.5	D	-2	37.1	-66	39.3	23200	23176	-1060	-53754	58547	ABC
1997.5	D	-2	31.1	-66	39.0	23202	23180	-1019	-53746	58541	ABC
1998.5	D	-2	25.2	-66	39.2	23194	23173	-979	-53736	58528	ABC
1999.5	D	-2	18.6	-66	37.8	23210	23191	-936	-53711	58512	ABC
2000.5	D	-2	13.9	-00 -66	37.3	23210	23191	-930	-53688	58490	ABC
2000.0		-2 -2	9.6	-00 -66	37.3 36	23208	23190	-904 -875	-53656	58490 58465	ABC
2001.5	D										

Gnangara Annual Mean Values (cont.)

* J = Jump due to change of observation site:

jump value = old site value - new site value

K indices & Dail	v K sums at	Gnangara (K	=9 limit: 450	nT) for 2001
It multes & Dun	y in sums at	Onungur u (11	-> mmt. 400	11,101 2001

		ar Singura (
Date	January	February	March	April	May	June	Date
01	Q 1011 0011 05	2222 2112 14	31110222122011133314211333331922322444235333132323	5431 2345 27	Q 1110 0010 04	0003 3123 12	01
02	Q 1110 2123 11	2221 0111 10		4334 3442 27	1121 0110 07	D 5332 3333 25	02
03	3222 3112 16	Q 1111 0001 05		2110 0322 11	2113 1221 13	2210 0012 08	03
04	2123 4432 21	Q 2111 0021 08		2222 4442 22	1232 1011 11	3220 1212 13	04
05	2211 1122 12	1011 1111 07		2144 3343 24	Q 1000 0021 04	1211 0011 07	05
06	Q 2211 2111 11	D 2344 1233 22	2112 1231 13	2242 2444 24	0111 0012 06	1111 2133 13	06
07	2111 1122 11	3221 1112 13	2122 1322 15	4322 2544 26	1222 3231 16	3223 3111 16	07
08	2212 1353 19	1112 0222 11	2112 1233 15	D 3124 6466 32	1022 3343 18	1221 1112 11	08
09	2122 3122 15	2112 2221 13	2121 2311 13	3334 3541 26	D 3323 5653 30	D 2332 3444 25	09
10	1111 2323 14	2212 2221 14	1211 1220 10	3322 3332 21	D 4343 2332 24	D 5433 2322 24	10
11	31123322173222110112212231111322221132152213321317	2122 1112 12	Q 1011 1000 04	D 3132 3767 32	2111 1224 14	3322 2222 18	11
12		2111 2212 12	0022 3344 18	D 5444 3211 24	D 3223 5454 28	Q 1222 1022 12	12
13		D 4442 4344 29	2213 2111 13	D 2136 4544 29	D 3322 4444 26	3232 1221 16	13
14		D 2222 4443 23	2212 2122 14	2233 3322 20	4231 0131 15	2111 0123 11	14
15		2112 2212 13	Q 1010 0011 04	2223 3232 19	1234 1342 20	2222 0010 09	15
16	2121 4211 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q 0000 0101 02	3121 2212 14	2233 0001 11	2231 0021 11	16
17	2211 1322 14		Q 0010 1331 09	1112 1333 15	2211 0112 10	1122 3221 14	17
18	1123 1011 10		2222 2213 16	D 5644 1332 28	2222 2113 15	D 1446 3233 26	18
19	Q 2210 1122 11		D 1013 4554 23	Q 1111 2102 09	3221 1021 12	3110 2233 15	19
20	1133 2223 17		D 4355 8643 38	2221 3011 12	0121 1211 09	3342 3200 17	20
21	D 3234 3334 25	2122 3111 13	2121 1101 09	2110 1333 14	Q 0111 2101 07	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21
22	4332 2333 23	2121 1211 11	1111 3432 16	4243 5643 31	1111 1212 10		22
23	D 3214 3353 24	D 2322 3322 19	D 3324 4532 26	3334 2211 19	2221 1222 14		23
24	D 3214 4543 26	1112 2101 09	2332 4331 21	Q 2131 1011 10	2211 1101 09		24
25	2211 0332 14	Q 0010 0021 04	1222 1011 10	Q 2012 3122 13	1221 1321 13		25
26 27 28 29 30	2242 3132 19 2111 0112 09 1222 2333 18 D 4432 1123 20 Q 3211 1102 11	1111 1533 16 D 4333 3312 22 1112 4233 17	Q 1110 2011 07 4323 1345 25 D 3145 4534 29 2233 3332 21 3222 2333 20	0121 1132 11 Q 1121 1110 08 1434 6343 28 4332 3211 19 Q 1000 0000 01	1212 0010 07 0001 1422 10 2223 3323 20 3201 3210 12 Q 0000 0010 01	1212 3343 19 4220 0100 09 Q 0100 0000 01 Q 0000 0001 01 1223 2032 15	26 27 28 29 30
31	D 1144 4452 25		D 6655 4666 44		Q 0000 0000 00		31
Mean	K-sum 15.8	13.3	17.0	19.9	12.8	13.3	
Date	July	August	September	October	November	December	Date
01	2111 1222 12	2113 1311 13	Q 2211 0111 09	D 5345 5445 35	D 4224 4321 22	2123 3213 17	01
02	Q 1101 1021 07	1111 1211 09	0001 1322 09	D 3354 3444 30	2221 3202 14	2121 1223 14	02
03	1112 2231 13	1242 1232 17	2122 2324 18	D 3247 6544 35	Q 2100 0010 04	0211 2353 17	03

Date		July		August		Septembe	r		Octobe	er		November		De	cember		Date
01 02 03 04 05	Q 1101 1112 1101	1222 12 1021 07 2231 13 0201 06 1242 14	1 1 (21131311131111121109124212321701012421111124433220	Ĩ	2211 0111 0001 1322 2122 2324 2222 2332 2221 2321	09 18 18	D D	5345 5445 3354 3444 3247 6544 3135 2421 0112 1332	4 30 4 35 21		4224432122213202210000101112121110232454	14 04 10	2121 0211 4222	3213 1223 2353 2132 1232	14 17 18	01 02 03 04 05
06 07 08 09 10	Q 1011 D 2221 4110	2231 12 1111 07 1234 17 0021 09 2232 13	2	22355423262223111113111211010812112213133120	Q Q	1122 0021 1000 0113 2121 1220 1011 1100 1100 0111	06 11 05	Q	2232 2021 1010 1002 3123 4424 4223 3321 1112 3232	2 05 23 20	_	9864566542122333222210122112112231111113	20 12 12 (2210		14 12 06	06 07 08 09 10
11 12 13 14 15	0022 0111 4222	0 0110 07 2 2132 12 0012 06 2 3311 18 2 3333 17	~ - D -			1101 3442 2332 2323 2333 3320 3221 2114 4222 3342	20 19 16		2121 3554 5544 5334 3123 2321 2222 2343 4222 0102	33 17 20		1113 0111 2001 1001 2110 0321 1120 0010 0001 1452	05 10 (05	2111 1212	3254	25 06 16	11 12 13 14 15
16 17 18 19 20	D 3322 1231 1113	2 2313 16 2 2222 18 2321 15 2232 15 2 2232 15 2 1201 10	D (2 (11 1000 0003 3466 22 2341 3222 19 0233 1121 13 1011 2112 09		2110 1332 2222 1003 3221 1342 3311 1122 2002 1112	12 18 14	Q Q	3232 3223 1111 0012 2000 1121 2221 3422 1132 3233	2 07 07 2 18	D	2222 3312 2222 3333 2212 2213 3122 3353 1122 0001	20 I 15 22) 3322 3223	2312 1212	22 18 14	16 17 18 19 20
21 22 23 24 25	2222 3332 3332	2101092112142232220333222253226	D 2 2 Q 1	12131323162134434425212011110911010000031112224215	D	2000 1003 2223 3210 2234 4564 3211 1131 1210 1056	15 30 13	D Q	2111 2667 6435 6665 5221 3211 0100 0000 0043 0121	5 41 17 0 01	D	1111 1212 2223 1122 3322 3333 3587 8625 2234 2102	15 22 44 I	2123 2353	1112 1213	15 15 26	21 22 23 24 25
26 27 28 29 30 31	3333 Q 2232 3332 2232	3 3132 21 2 2222 20 2 1000 10 2 2111 16 2 1233 18 3 4533 27	Q 2	323321242022113244193211222114211310010911122431152213321216	D	6343 1223 2112 1333 3142 3323 3224 3455 3222 4455	16 21 28	~	2111 0022 2201 2011 3444 6333 2233 2323 3112 1212 0000 3243	09 30 20 213	õ	2121 0001 1101 0112 1000 0012 2111 2010 2000 0022	07 04 08 06 I	2101 0121		11 12 21 26	26 27 28 29 30 31
	K-sum	14.4	4	14.8		15	. 3			.8.6		14	.6	, 4211	-	20 5.4	51
	it built	T 1 1 1		11.0		10	•••		-				•••			• •	

Occurrence distribution of K indices

K-Index:	0	1	2	3	4	5	6	7	8	9	-
January	10	83	84	50	17	4	0	0	0	0	0
February	17	94	78	20	14	1	0	0	0	0	0
March	27	69	63	52	19	11	6	0	1	0	0
April	16	52	59	56	39	8	8	2	0	0	0
May	49	80	66	34	14	4	1	0	0	0	0
June	43	67	74	44	9	2	1	0	0	0	0
July	23	78	85	52	7	3	0	0	0	0	0
August	20	77	55	30	16	2	2	0	0	0	46
September	32	63	75	45	16	6	3	0	0	0	0
October	31	49	67	48	28	15	8	2	0	0	0
November	43	71	71	30	9	7	4	1	3	1	0
December	10	68	96	53	16	5	0	0	0	0	0
ANNUAL TOTAL	321	851	873	514	204	68	33	5	4	1	46

Gnangara 2001 Monthly & Annual Mean Values

The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

Gnangara	2001	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I
January	All days	23235.7	-887.5	-53661.2	58482.5	23252.7	-2° 11.2'	-66° 34.3'
	5xQ days	23245.2	-883.7	-53657.4	58482.8	23262.0	-2° 10.6'	-66° 33.7'
	5xD days	23224.4	-892.2	-53664.8	58481.5	23241.6	-2° 12.0'	-66° 35.0'
February	All days	23234.0	-882.6	-53653.8	58475.0	23250.8	-2° 10.5'	-66° 34.2'
	5xQ days	23239.0	-881.3	-53653.5	58476.7	23255.8	-2° 10.3'	-66° 34.0'
	5xD days	23225.2	-884.1	-53655.8	58473.4	23242.1	-2° 10.8'	-66° 34.8'
March	All days	23215.6	-880.7	-53654.6	58468.4	23232.3	-2° 10.4'	-66° 35.3'
	5xQ days	23234.2	-878.3	-53648.1	58469.8	23250.8	-2° 09.9'	-66° 34.1'
	5xD days	23160.5	-888.5	-53669.6	58460.5	23177.5	-2° 11.8'	-66° 38.6'
April	All days	23201.5	-876.9	-53663.0	58470.5	23218.1	-2° 09.9'	-66° 36.2'
	5xQ days	23216.6	-875.5	-53661.2	58474.8	23233.1	-2° 09.6'	-66° 35.4'
	5xD days	23177.0	-879.7	-53666.2	58463.8	23193.7	-2° 10.4'	-66° 37.6'
Мау	All days	23222.6	-873.5	-53655.7	58472.1	23239.0	-2° 09.3'	-66° 34.9'
	5xQ days	23229.9	-873.6	-53653.1	58472.7	23246.4	-2° 09.2'	-66° 34.5'
	5xD days	23198.5	-874.2	-53662.6	58468.8	23214.9	-2° 09.5'	-66° 36.4'
June	All days	23227.0	-872.5	-53651.2	58469.7	23243.4	-2° 09.1'	-66° 34.6'
	5xQ days	23232.7	-873.3	-53650.2	58471.1	23249.1	-2° 09.2'	-66° 34.2'
	5xD days	23215.0	-871.6	-53654.5	58468.0	23231.4	-2° 09.0'	-66° 35.3'
July	All days	23231.4	-870.1	-53646.3	58466.9	23247.7	-2° 08.7'	-66° 34.2'
	5xQ days	23236.0	-870.5	-53646.2	58468.6	23252.3	-2° 08.7'	-66° 34.0'
	5xD days	23226.8	-869.8	-53647.2	58465.9	23243.1	-2° 08.7'	-66° 34.5'
August	All days	23228.6	-868.0	-53643.9	58463.6	23244.8	-2° 08.4'	-66° 34.3'
	5xQ days	23236.0	-866.4	-53641.8	58464.6	23252.2	-2° 08.1'	-66° 33.9'
	5xD days	23219.7	-872.4	-53649.7	58465.4	23236.1	-2° 09.1'	-66° 34.9'
September	All days	23229.6	-865.9	-53639.0	58459.5	23245.7	-2° 08.1'	-66° 34.2'
	5xQ days	23240.3	-864.2	-53637.2	58462.0	23256.4	-2° 07.8'	-66° 33.5'
	5xD days	23213.6	-867.7	-53640.4	58454.4	23229.8	-2° 08.4'	-66° 35.1'
October	All days	23207.9	-866.2	-53649.1	58460.2	23224.1	-2° 08.2'	-66° 35.6'
	5xQ days	23230.8	-861.7	-53642.2	58462.8	23246.8	-2° 07.5'	-66° 34.2'
	5xD days	23164.1	-873.4	-53657.5	58450.5	23180.6	-2° 09.6'	-66° 38.1'
November	All days	23218.6	-862.4	-53650.0	58465.1	23234.6	-2° 07.6'	-66° 35.0'
	5xQ days	23237.7	-860.8	-53646.4	58469.4	23253.7	-2° 07.3'	-66° 33.9'
	5xD days	23170.6	-866.6	-53664.6	58459.6	23186.9	-2° 08.5'	-66° 37.9'
December	All days	23244.1	-859.9	-53641.6	58467.5	23260.1	-2° 07.1'	-66° 33.4'
	5xQ days	23244.9	-857.5	-53640.9	58467.1	23260.7	-2° 06.8'	-66° 33.4'
	5xD days	23235.0	-861.9	-53643.6	58465.8	23251.0	-2° 07.5'	-66° 34.0'
Annual	All days	23224.7	-872.2	-53650.8	58468.4	23241.1	-2° 09.0'	-66° 34.7'
Mean	5xQ days	23224.7	-870.6	-53650.8 -53648.2	58470.2	23241.1	-2° 09.0 -2° 08.7'	-66° 34.1'
Values	5xQ days 5xD days	23235.5	-875.2	-53656.4	58464.8	23231.0	-2° 00.7 -2° 09.6'	-66° 36.0'
values	JAD Uays	20202.0	-010.2	-00000.4	00404.0	20219.0	-2 09.0	-00 30.0

(Calculated: 12:13 hrs., Mon. 31 Mar. 2003)

Hourly Mean Values

The charts on the following pages are plots of hourly mean values.

The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.

Gnangara (GNA) Declination (Quiet days) Annual Mean Values (D) & Secular Variation (dD)

- 48 -

End of Part 1